2021雅安高三下学期5月第三次诊断考试数学(文)试题PDF版含答案
展开
这是一份2021雅安高三下学期5月第三次诊断考试数学(文)试题PDF版含答案,文件包含2021届高三四川省雅安市高三第三次诊断考试数学文答案docx、2021届高三四川省雅安市高三第三次诊断考试数学文试题pdf版pdf等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。
雅安市高中2018级第三次诊断性考试数学(文科)参考答案及评分标准一.选择题1.C 2.A 3.D 4.B 5.C 6.D 7.C 8.D 9.B 10.C 11.B 12.A 二.填空题13.1 14. 15. 5 16. ②③④三、解答题 17解:∵是与的等差中项∴=∴ ∴........................................................3分∵∴∴ ∴ ....................6分(2) ∵∴........................................9分 ..................................11分∴.............................................................................................................................12分 18解:(1)由已知可得,40岁及以下采用乘坐成雅高铁出行的有人··························································1分 40岁及以下40岁上合计乘成雅高铁401050不乘成雅高铁203050合计6040100列联表如表: ········································································4分由列联表中的数据计算可得的观测值····································6分由于,故有的把握认为“采用乘坐成雅高铁出行与年龄有关”.7分(2)采用分层抽样的方法,从“岁(含)以下”的人中抽取人,记为1.2.3,从“岁以上”的人中抽取人,记为a.b. ··············8分则基本事件为(1,2),(1,3),(1,a),(1,b),(2,3),(2,a),(2,b),(3,a),(3,b),(a,b),共10个.··································································10分符合条件的共6种,故抽到2人中恰有一人为40岁以上的概率为6/10=0.6.·········12分 解(1)由题意,可知在等腰梯形中,,∵,分别为,的中点,∴,. ∴折叠后,,. ∵,∴平面. ···································4分 又平面,∴. ······································6分 (2)易知,.∵,∴. 又,∴四边形为平行四边形.∴,故. ∵平面平面,平面平面,且,∴平面. ·······························································9分 ∴ .即三棱锥的体积为. ···········································12分 20.解:(1)①,且过点,②③由①②③解得:,椭圆的标准方程,..........................................4分(2)(i)若的斜率不存在,则此时.........................................5分(ii)若的斜率存在,设,设的方程为:,,.........................6分由韦达定理得:...........................7分则:,............................................8分 =...............................................11分所以:=1........................................................12分另解:(2)当直线AB的斜率为0时,,..........5分当直线AB的斜率不为0时,设直线AB为:,设则:,....................................6分,..........................................7分则:,..............................................8分,...................................................11分所以:.........................................................12分解:(1)由题意,,可得a=(x>0),...............1分转化为函数T(x)=与直线y=a在(0,+∞)上有两个不同交点...........2分T′(x)=(x>0),故当x∈(0,1)时,T′(x)>0;当x∈(1,+∞)时,T′(x)<0,故T(x)在(0,1)上单调递增,在(1,+∞)上单调递减,························4分所以T(x)max=T(1)=1.又T=0,故当x∈时,T(x)<0,当x∈时,T(x)>0. ·········5分可得a∈(0,1).··························································6分另解:则:,...........1分①当时,恒成立,不满足题意;······.3分 ②当时,单调递减,则,当.................................5分综上:...........................................................6分(2)证明: h′(x)=-a, 因为x1,x2是ln x-ax+1=0的两个根,故ln x1-ax1+1=0, ln x2-ax2+1=0⇒ a=,··················8分要证h′(x1x2)<1-a,只需证x1x2>1, 即证ln x1+ln x2>0, 即证(ax1-1)+(ax2-1)>0,即只需证明 a>成立,即证>.··························9分不妨设0<x1<x2,故ln <=.( * )···························10分令t=∈(0,1),φ(t)=ln t-,······································11分φ′(t)=-=>0,则h(t)在(0,1)上单调递增,则φ(t)< φ(1)=0,故(*)式成立,即要证不等式得证.······································12分22. 解 :(1)直线l的直角坐标方程为:························2分曲线C的极坐标方程为:,即,化为直角坐标方程:.将曲线C上所有点的横坐标缩短为原来的一半,纵坐标不变,得到曲线:. ···············································5分(2)直线的极坐标方程为,展开可得:.可得直角坐标方程:.可得参数方程:(为参数). ····························7分代入曲线的直角坐标方程可得:.解得,.∴. ··········································10分23.解:(1)或解出或无解, 所以,原不等式的解集为[0,1]··························5分另解:(1)当时,等价于,则∴或无解综上,原不等式的解集为[0,1]·················································.5分(2)当时,,因为,所以恒成立,即恒成立,所以满足的解集为;而,当时,,当时,,作出的图像如下图所示,要使的解集为,则需或,解得或;综上可得:a的取值范围是. ····10 分
相关试卷
这是一份2020雅安高中高三第三次诊断数学(文)试题含答案
这是一份2021雅安高三下学期5月第三次诊断考试数学(理)试题PDF版含答案,文件包含2021届高三四川省雅安市高三第三次诊断考试数学理答案docx、2021届高三四川省雅安市高三第三次诊断考试数学理试题pdf版pdf等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
这是一份2021雅安高三下学期5月第三次诊断考试数学(理)含答案,共15页。试卷主要包含了答题前,考生务必将自己的姓名,考试结束后,将答题卡收回等内容,欢迎下载使用。