2021-2022学年江苏省无锡市江阴市澄东片中考数学押题卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
成绩
人数
2
3
2
3
4
1
则这些运动员成绩的中位数、众数分别为
A.、 B.、 C.、 D.、
2.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=﹣2实数根的情况是 ( )
A.有三个实数根 B.有两个实数根 C.有一个实数根 D.无实数根
3.二次函数y=ax2+c的图象如图所示,正比例函数y=ax与反比例函数y=在同一坐标系中的图象可能是( )
A. B. C. D.
4.在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是( )
A.﹣3 B.0 C. D.﹣1
5.计算的结果是( ).
A. B. C. D.
6.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )
A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1
C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣1
7.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是( )
A.最喜欢篮球的人数最多 B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍
C.全班共有50名学生 D.最喜欢田径的人数占总人数的10 %
8.下列调查中,调查方式选择合理的是( )
A.为了解襄阳市初中每天锻炼所用时间,选择全面调查
B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查
C.为了解神舟飞船设备零件的质量情况,选择抽样调查
D.为了解一批节能灯的使用寿命,选择抽样调查
9.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )
A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF
10.如图,直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α的余角等于( )
A.19° B.38° C.42° D.52°
二、填空题(共7小题,每小题3分,满分21分)
11.如图,正方形ABCD的边长为3,点E,F分别在边BCCD上,BE=CF=1,小球P从点E出发沿直线向点F运动,完成第1次与边的碰撞,每当碰到正方形的边时反弹,反弹时反射角等于入射角,则小球P与正方形的边第2次碰撞到__边上,小球P与正方形的边完成第5次碰撞所经过的路程为__.
12.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于 ______ 度.
13.有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是__.
14.如图,在△ABC中,AB=AC=10cm,F为AB上一点,AF=2,点E从点A出发,沿AC方向以2cm/s的速度匀速运动,同时点D由点B出发,沿BA方向以lcm/s的速度运动,设运动时间为t(s)(0<t<5),连D交CF于点G.若CG=2FG,则t的值为_____.
15.计算(2a)3的结果等于__.
16.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.
17.函数中自变量x的取值范围是___________.
三、解答题(共7小题,满分69分)
18.(10分) “绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):
1 1 2 3 2 3 2 3 3 4 3 3 4 3 3
5 3 4 3 4 4 5 4 5 3 4 3 4 5 6
(1)对以上数据进行整理、描述和分析:
①绘制如下的统计图,请补充完整;
②这30户家庭2018年4月份义务植树数量的平均数是______,众数是______;
(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有______户.
19.(5分)直线y1=kx+b与反比例函数的图象分别交于点A(m,4)和点B(n,2),与坐标轴分别交于点C和点D.
(1)求直线AB的解析式;
(2)根据图象写出不等式kx+b﹣≤0的解集;
(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.
20.(8分)先化简,再求值:(1﹣)÷,其中x=1.
21.(10分)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
(1)证明与推断:
①求证:四边形CEGF是正方形;
②推断:的值为 :
(2)探究与证明:
将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:
(3)拓展与运用:
正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC= .
22.(10分)如图,抛物线交X轴于A、B两点,交Y轴于点C ,.
(1)求抛物线的解析式;
(2)平面内是否存在一点P,使以A,B,C,P为顶点的四边形为平行四边形,若存在直接写出P的坐标,若不存在请说明理由。
23.(12分) “知识改变命运,科技繁荣祖国”.在举办一届全市科技运动会上.下图为某校2017年参加科技运动会航模比赛(包括空模、海模、车模、建模四个类别)的参赛人数统计图:
(1)该校参加航模比赛的总人数是 人,空模所在扇形的圆心角的度数是 ;
(2)并把条形统计图补充完整;
(3)从全市中小学参加航模比赛选手中随机抽取80人,其中有32人获奖.今年全市中小学参加航模比赛人数共有2500人,请你估算今年参加航模比赛的获奖人数约是多少人?
24.(14分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据中位数和众数的概念进行求解.
【详解】
解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65, 1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80
众数为:1.75;
中位数为:1.1.
故选C.
【点睛】
本题考查1.中位数;2.众数,理解概念是解题关键.
2、C
【解析】
试题分析:由得,,即是判断函数与函数的图象的交点情况.
因为函数与函数的图象只有一个交点
所以方程只有一个实数根
故选C.
考点:函数的图象
点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.
3、C
【解析】
根据二次函数图像位置确定a0,c0,即可确定正比例函数和反比例函数图像位置.
【详解】
解:由二次函数的图像可知a0,c0,
∴正比例函数过二四象限,反比例函数过一三象限.
故选C.
【点睛】
本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键.
4、B
【解析】
|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,
∵3>2>>1>0,
∴绝对值最小的数是0,
故选:B.
5、D
【解析】
根据同底数幂的乘除法运算进行计算.
【详解】
3x2y2×x3y2÷xy3=6x5y4÷xy3=6x4y.故答案选D.
【点睛】
本题主要考查同底数幂的乘除运算,解题的关键是知道:同底数幂相乘,底数不变,指数相加.
6、B
【解析】
∵函数y=-2x2的顶点为(0,0),
∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),
∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,
故选B.
【点睛】
二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.
7、C
【解析】
【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.
【详解】观察直方图,由图可知:
A. 最喜欢足球的人数最多,故A选项错误;
B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;
C. 全班共有12+20+8+4+6=50名学生,故C选项正确;
D. 最喜欢田径的人数占总人数的=8 %,故D选项错误,
故选C.
【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.
8、D
【解析】
A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;
B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;
C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;
D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;
故选D.
9、B
【解析】
【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.
【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,
∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;
B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;
C、如图,∵四边形ABCD是平行四边形,∴OA=OC,
∵AF//CE,∴∠FAO=∠ECO,
又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,
∴AF CE,∴四边形AECF是平行四边形,故不符合题意;
D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,
∴∠ABE=∠CDF,
又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,
∴AE//CF,
∴AE CF,∴四边形AECF是平行四边形,故不符合题意,
故选B.
【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.
10、D
【解析】
试题分析:过C作CD∥直线m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,则∠a的余角是52°.故选D.
考点:平行线的性质;余角和补角.
二、填空题(共7小题,每小题3分,满分21分)
11、AB,
【解析】
根据已知中的点E,F的位置,可知入射角的正切值为,通过相似三角形,来确定反射后的点的位置.再由勾股定理就可以求出小球第5次碰撞所经过路程的总长度.
【详解】
根据已知中的点E,F的位置,可知入射角的正切值为,第一次碰撞点为F,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得,
第二次碰撞点为G,在AB上,且AG=AB,
第三次碰撞点为H,在AD上,且AH=AD,
第四次碰撞点为M,在DC上,且DM=DC,
第五次碰撞点为N,在AB上,且BN=AB,
第六次回到E点,BE=BC.
由勾股定理可以得出EF=,FG= ,GH= ,HM=,MN= ,NE= ,
故小球第5次经过的路程为:+ + ++ = ,
故答案为AB, .
【点睛】
本题考查了正方形与轴对称的性质,解题的关键是熟练的掌握正方形与轴对称的性质.
12、108°
【解析】
如图,易得△OCD为等腰三角形,根据正五边形内角度数可求出∠OCD,然后求出顶角∠COD,再用360°减去∠AOC、∠BOD、∠COD即可
【详解】
∵五边形是正五边形,
∴每一个内角都是108°,
∴∠OCD=∠ODC=180°-108°=72°,
∴∠COD=36°,
∴∠AOB=360°-108°-108°-36°=108°.
故答案为108°
【点睛】
本题考查正多边形的内角计算,分析出△OCD是等腰三角形,然后求出顶角是关键.
13、
【解析】
列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率.
【详解】
解:列表如下:
5
6
7
8
9
5
﹣﹣﹣
(6、5)
(7、5)
(8、5)
(9、5)
6
(5、6)
﹣﹣﹣
(7、6)
(8、6)
(9、6)
7
(5、7)
(6、7)
﹣﹣﹣
(8、7)
(9、7)
8
(5、8)
(6、8)
(7、8)
﹣﹣﹣
(9、8)
9
(5、9)
(6、9)
(7、9)
(8、9)
﹣﹣﹣
所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,
则P(恰好是两个连续整数)=
故答案为.
【点睛】
此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.
14、1
【解析】
过点C作CH∥AB交DE的延长线于点H,则,证明,可求出CH,再证明,由比例线段可求出t的值.
【详解】
如下图,过点C作CH∥AB交DE的延长线于点H,
则,
∵DF∥CH,
∴,
∴,
∴,
同理,
∴,
∴,解得t=1,t=(舍去),
故答案为:1.
【点睛】
本题主要考查了三角形中的动点问题,熟练掌握三角形相似的相关方法是解决本题的关键.
15、8
【解析】
试题分析:根据幂的乘方与积的乘方运算法则进行计算即可
考点:(1)、幂的乘方;(2)、积的乘方
16、50(1﹣x)2=1.
【解析】
由题意可得,
50(1−x)²=1,
故答案为50(1−x)²=1.
17、x≤2
【解析】
试题解析:根据题意得:
解得:.
三、解答题(共7小题,满分69分)
18、 (1) 3.4棵、3棵;(2)1.
【解析】
(1)①由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得;②根据平均数和众数的定义求解可得;
(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得.
【详解】
解:(1)①由已知数据知3棵的有12人、4棵的有8人,
补全图形如下:
②这30户家庭2018年4月份义务植树数量的平均数是(棵),众数为3棵,
故答案为:3.4棵、3棵;
(2)估计该小区采用这种形式的家庭有户,
故答案为:1.
【点睛】
此题考查条形统计图,加权平均数,众数,解题关键在于利用样本估计总体.
19、 (1) y=﹣x+6;(2) 0<x<2或x>4;(3) 点P的坐标为(2,0)或(﹣3,0).
【解析】
(1)将点坐标代入双曲线中即可求出,最后将点坐标代入直线解析式中即可得出结论;
(2)根据点坐标和图象即可得出结论;
(3)先求出点坐标,进而求出,设出点P坐标,最后分两种情况利用相似三角形得出比例式建立方程求解即可得出结论.
【详解】
解:(1)∵点和点在反比例函数的图象上,
,
解得,
即
把两点代入中得 ,
解得:,
所以直线的解析式为:;
(2)由图象可得,当时,的解集为或.
(3)由(1)得直线的解析式为,
当时,y=6,
,
,
当时,,
∴点坐标为
.
设P点坐标为,由题可以,点在点左侧,则
由可得
①当时,,
,解得,
故点P坐标为
②当时,,
,解得,
即点P的坐标为
因此,点P的坐标为或时,与相似.
【点睛】
此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,用方程的思想和分类讨论的思想解决问题是解本题的关键.
20、.
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.
【详解】
原式==
当x=1时,原式=.
【点睛】
本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.
21、(1)①四边形CEGF是正方形;②;(2)线段AG与BE之间的数量关系为AG=BE;(3)3
【解析】
(1)①由、结合可得四边形CEGF是矩形,再由即可得证;
②由正方形性质知、,据此可得、,利用平行线分线段成比例定理可得;
(2)连接CG,只需证∽即可得;
(3)证∽得,设,知,由得、、,由可得a的值.
【详解】
(1)①∵四边形ABCD是正方形,
∴∠BCD=90°,∠BCA=45°,
∵GE⊥BC、GF⊥CD,
∴∠CEG=∠CFG=∠ECF=90°,
∴四边形CEGF是矩形,∠CGE=∠ECG=45°,
∴EG=EC,
∴四边形CEGF是正方形;
②由①知四边形CEGF是正方形,
∴∠CEG=∠B=90°,∠ECG=45°,
∴,GE∥AB,
∴,
故答案为;
(2)连接CG,
由旋转性质知∠BCE=∠ACG=α,
在Rt△CEG和Rt△CBA中,
=、=,
∴=,
∴△ACG∽△BCE,
∴,
∴线段AG与BE之间的数量关系为AG=BE;
(3)∵∠CEF=45°,点B、E、F三点共线,
∴∠BEC=135°,
∵△ACG∽△BCE,
∴∠AGC=∠BEC=135°,
∴∠AGH=∠CAH=45°,
∵∠CHA=∠AHG,
∴△AHG∽△CHA,
∴,
设BC=CD=AD=a,则AC=a,
则由得,
∴AH=a,
则DH=AD﹣AH=a,CH==a,
∴由得,
解得:a=3,即BC=3,
故答案为3.
【点睛】
本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.
22、(1);(2) (3,-4) 或(5,4)或(-5,4)
【解析】
(1)设|OA|=1,确定A,B,C三点坐标,然后用待定系数法即可完成;
(2)先画出存在的点,然后通过平移和计算确定坐标;
【详解】
解:(1)设|OA|=1,则A(-1,0),B(4,0)C(0,4)
设抛物线的解析式为y=ax2+bx+c
则有: 解得
所以函数解析式为:
(2)存在,(3,-4) 或(5,4)或(-5,4)
理由如下:如图:
P1相当于C点向右平移了5个单位长度,则坐标为(5,4);
P2相当于C点向左平移了5个单位长度,则坐标为(-5,4);
设P3坐标为(m,n)在第四象限,要使A P3BC是平行四边形,
则有A P3=BC, B P3=AC
∴ 即 (舍去)
P3坐标为(3,-4)
【点睛】
本题主要考查了二次函数综合题,此题涉及到待定系数法求二次函数解析式,通过作图确认平行四边形存在,然后通过观察和计算确定P点坐标;解题的关键在于规范作图,以便于树形结合.
23、(1)24,120°;(2)见解析;(3)1000人
【解析】
(1)由建模的人数除以占的百分比,求出调查的总人数即可,再算空模人数,即可知道空模所占百分比,从而算出对应的圆心角度数;(2)根据空模人数然后补全条形统计图;(3)根据随机取出人数获奖的人数比,即可得到结果.
【详解】
解:(1)该校参加航模比赛的总人数是6÷25%=24(人),
则参加空模人数为24﹣(6+4+6)=8(人),
∴空模所在扇形的圆心角的度数是360°×=120°,
故答案为:24,120°;
(2)补全条形统计图如下:
(3)估算今年参加航模比赛的获奖人数约是2500×=1000(人).
【点睛】
此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.
24、木竿PQ的长度为3.35米.
【解析】
过N点作ND⊥PQ于D,则四边形DPMN为矩形,根据矩形的性质 得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长.
试题解析:
【详解】
解:过N点作ND⊥PQ于D,
则四边形DPMN为矩形,
∴DN=PM=1.8m,DP=MN=1.1m,
∴,
∴QD==2.25,
∴PQ=QD+DP= 2.25+1.1=3.35(m).
答:木竿PQ的长度为3.35米.
【点睛】
本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键.
江苏省江阴市青阳片达标名校2021-2022学年中考数学押题卷含解析: 这是一份江苏省江阴市青阳片达标名校2021-2022学年中考数学押题卷含解析,共18页。试卷主要包含了答题时请按要求用笔,下列方程中有实数解的是等内容,欢迎下载使用。
2022年江苏省江阴市华士片、澄东片中考数学模试卷含解析: 这是一份2022年江苏省江阴市华士片、澄东片中考数学模试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,如图,某校40名学生参加科普知识竞赛等内容,欢迎下载使用。
2021-2022学年江苏省无锡市江阴市澄东片中考数学猜题卷含解析: 这是一份2021-2022学年江苏省无锡市江阴市澄东片中考数学猜题卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,-5的相反数是等内容,欢迎下载使用。