2021-2022学年内蒙古翁牛特旗中考数学考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是( )
A.∠ABD=∠C B.∠ADB=∠ABC C. D.
2.如图1,在矩形ABCD中,动点E从A出发,沿A→B→C方向运动,当点E到达点C时停止运动,过点E作EF⊥AE交CD于点F,设点E运动路程为x,CF=y,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:①a=3;②当CF=时,点E的运动路程为或或,则下列判断正确的是( )
A.①②都对 B.①②都错 C.①对②错 D.①错②对
3.下列计算正确的是
A. B. C. D.
4.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D等于( )
A.2 B.3 C. D.
5.下列图形中,可以看作是中心对称图形的是( )
A. B. C. D.
6.已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围内有两个相等的实数根,则c的取值范围是( )
A.c=4 B.﹣5<c≤4 C.﹣5<c<3或c=4 D.﹣5<c≤3或c=4
7.二次函数y=ax2+bx+c(a≠0)的图象如图,a,b,c的取值范围( )
A.a<0,b<0,c<0 B.a<0,b>0,c<0
C.a>0,b>0,c<0 D.a>0,b<0,c<0
8.老师在微信群发了这样一个图:以线段AB为边作正五边形ABCDE和正三角形ABG,连接AC、DG,交点为F,下列四位同学的说法不正确的是( )
A.甲 B.乙 C.丙 D.丁
9.|﹣3|的值是( )
A.3 B. C.﹣3 D.﹣
10.近似数精确到( )
A.十分位 B.个位 C.十位 D.百位
二、填空题(共7小题,每小题3分,满分21分)
11.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”
用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.
12.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是
13.如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按照此做法进行下去,点A8的坐标为__________.
14.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.
15.已知a,b为两个连续的整数,且a<<b,则ba=_____.
16.一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是____.
17.在直角三角形ABC中,∠C=90°,已知sinA=,则cosB=_______.
三、解答题(共7小题,满分69分)
18.(10分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图).请回答以下问题:
(1)该班学生选择 观点的人数最多,共有 人,在扇形统计图中,该观点所在扇形区域的圆心角是 度.
(2)利用样本估计该校初三学生选择“中技”观点的人数.
(3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答).
19.(5分)如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.
20.(8分)如图,在平行四边形ABCD中,过点A作AE⊥DC,垂足为点E,连接BE,点F为BE上一点,连接AF,∠AFE=∠D.
(1)求证:∠BAF=∠CBE;
(2)若AD=5,AB=8,sinD=.求证:AF=BF.
21.(10分)矩形AOBC中,OB=4,OA=1.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E。当点F运动到边BC的中点时,求点E的坐标;连接EF,求∠EFC的正切值;如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.
22.(10分)如图,在矩形ABCD中,对角线AC,BD相交于点O.画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.
23.(12分)先化简÷(x-),然后从-
(1)将条形统计图补充完整;
(2)该班团员在这一个月内所发箴言的平均条数是________;
(3)如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,现要从发了3条箴言和4条箴言的同学中分别选出一位参加总结会,请你用列表或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.
【详解】
∵∠A是公共角,
∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;
当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;
AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,
故选C.
2、A
【解析】
由已知,AB=a,AB+BC=5,当E在BC上时,如图,可得△ABE∽△ECF,继而根据相似三角形的性质可得y=﹣,根据二次函数的性质可得﹣,由此可得a=3,继而可得y=﹣,把y=代入解方程可求得x1=,x2=,由此可求得当E在AB上时,y=时,x=,据此即可作出判断.
【详解】
解:由已知,AB=a,AB+BC=5,
当E在BC上时,如图,
∵E作EF⊥AE,
∴△ABE∽△ECF,
∴,
∴,
∴y=﹣,
∴当x=时,﹣,
解得a1=3,a2=(舍去),
∴y=﹣,
当y=时,=﹣,
解得x1=,x2=,
当E在AB上时,y=时,
x=3﹣=,
故①②正确,
故选A.
【点睛】
本题考查了二次函数的应用,相似三角形的判定与性质,综合性较强,弄清题意,正确画出符合条件的图形,熟练运用二次函数的性质以及相似三角形的判定与性质是解题的关键.
3、B
【解析】
试题分析:根据合并同类项的法则,可知,故A不正确;
根据同底数幂的除法,知,故B正确;
根据幂的乘方,知,故C不正确;
根据完全平方公式,知,故D不正确.
故选B.
点睛:此题主要考查了整式的混合运算,解题关键是灵活应用合并同类项法则,同底数幂的乘除法法则,幂的乘方,乘法公式进行计算.
4、A
【解析】
分析:由S△ABC=9、S△A′EF=1且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根据△DA′E∽△DAB知,据此求解可得.
详解:如图,
∵S△ABC=9、S△A′EF=1,且AD为BC边的中线,
∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,
∵将△ABC沿BC边上的中线AD平移得到△A'B'C',
∴A′E∥AB,
∴△DA′E∽△DAB,
则,即,
解得A′D=2或A′D=-(舍),
故选A.
点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.
5、A
【解析】
分析:根据中心对称的定义,结合所给图形即可作出判断.
详解:A、是中心对称图形,故本选项正确;
B、不是中心对称图形,故本选项错误;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误;
故选:A.
点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.
6、D
【解析】
解:由对称轴x=2可知:b=﹣4,
∴抛物线y=x2﹣4x+c,
令x=﹣1时,y=c+5,
x=3时,y=c﹣3,
关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围有实数根,
当△=0时,
即c=4,
此时x=2,满足题意.
当△>0时,
(c+5)(c﹣3)≤0,
∴﹣5≤c≤3,
当c=﹣5时,
此时方程为:﹣x2+4x+5=0,
解得:x=﹣1或x=5不满足题意,
当c=3时,
此时方程为:﹣x2+4x﹣3=0,
解得:x=1或x=3此时满足题意,
故﹣5<c≤3或c=4,
故选D.
点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.
7、D
【解析】
试题分析:根据二次函数的图象依次分析各项即可。
由抛物线开口向上,可得,
再由对称轴是,可得,
由图象与y轴的交点再x轴下方,可得,
故选D.
考点:本题考查的是二次函数的性质
点评:解答本题的关键是熟练掌握二次函数的性质:的正负决定抛物线开口方向,对称轴是,C的正负决定与Y轴的交点位置。
8、B
【解析】
利用对称性可知直线DG是正五边形ABCDE和正三角形ABG的对称轴,再利用正五边形、等边三角形的性质一一判断即可;
【详解】
∵五边形ABCDE是正五边形,△ABG是等边三角形,
∴直线DG是正五边形ABCDE和正三角形ABG的对称轴,
∴DG垂直平分线段AB,
∵∠BCD=∠BAE=∠EDC=108°,∴∠BCA=∠BAC=36°,
∴∠DCA=72°,∴∠CDE+∠DCA=180°,∴DE∥AC,
∴∠CDF=∠EDF=∠CFD=72°,
∴△CDF是等腰三角形.
故丁、甲、丙正确.
故选B.
【点睛】
本题考查正多边形的性质、等边三角形的性质、轴对称图形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
9、A
【解析】
分析:根据绝对值的定义回答即可.
详解:负数的绝对值等于它的相反数,
故选A.
点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.
10、C
【解析】
根据近似数的精确度:近似数5.0×102精确到十位.
故选C.
考点:近似数和有效数字
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.
详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.
∵∠C+∠KDC=90°,∴∠C=∠HDA.
∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,
∴CK:KD=HD:HA,∴CK:100=100:15,
解得:CK=.
故答案为:.
点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.
12、4
【解析】
当CD∥AB时,PM长最大,连接OM,OC,得出矩形CPOM,推出PM=OC,求出OC长即可.
【详解】
当CD∥AB时,PM长最大,连接OM,OC,
∵CD∥AB,CP⊥CD,
∴CP⊥AB,
∵M为CD中点,OM过O,
∴OM⊥CD,
∴∠OMC=∠PCD=∠CPO=90°,
∴四边形CPOM是矩形,
∴PM=OC,
∵⊙O直径AB=8,
∴半径OC=4,
即PM=4.
【点睛】
本题考查矩形的判定和性质,垂径定理,平行线的性质,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.
13、(128,0)
【解析】
∵点A1坐标为(1,0),且B1A1⊥x轴,∴B1的横坐标为1,将其横坐标代入直线解析式就可以求出B1的坐标,就可以求出A1B1的值,OA1的值,根据锐角三角函数值就可以求出∠xOB3的度数,从而求出OB1的值,就可以求出OA2值,同理可以求出OB2、OB3…,从而寻找出点A2、A3…的坐标规律,最后求出A8的坐标.
【详解】
点坐标为(1,0),
轴
点的横坐标为1,且点在直线上
在中由勾股定理,得
,
在中,
.
.
.
.
故答案为 .
【点睛】
本题是一道一次函数的综合试题,也是一道规律试题,考查了直角三角形的性质,特别是所对的直角边等于斜边的一半的运用,点的坐标与函数图象的关系.
14、30
【解析】
根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P的度数.
【详解】
∵BP是∠ABC的平分线,CP是∠ACM的平分线,∠ABP=20°,∠ACP=50°,
∴∠PBC=20°,∠PCM=50°,
∵∠PBC+∠P=∠PCM,
∴∠P=∠PCM-∠PBC=50°-20°=30°,
故答案为:30
【点睛】
本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.
15、1
【解析】
根据已知a<<b,结合a、b是两个连续的整数可得a、b的值,即可求解.
【详解】
解:∵a,b为两个连续的整数,且a<<b,
∴a=2,b=3,
∴ba=32=1.
故答案为1.
【点睛】
此题考查的是如何根据无理数的范围确定两个有理数的值,题中根据的取值范围,可以很容易得到其相邻两个整数,再结合已知条件即可确定a、b的值,
16、.
【解析】
根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.
【详解】
∵一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,
∴从中任意摸出一个球恰好是红球的概率为: ,
故答案为.
【点睛】
本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.
17、.
【解析】
试题分析:解答此题要利用互余角的三角函数间的关系:sin(90°-α)=cosα,cos(90°-α)=sinα.
试题解析:∵在△ABC中,∠C=90°,
∴∠A+∠B=90°,
∴cosB=sinA=.
考点:互余两角三角函数的关系.
三、解答题(共7小题,满分69分)
18、(4)A高中观点.4. 446;(4)456人;(4).
【解析】
试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460°乘以选择“A高中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;
(4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;
(4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解.
试题解析:(4)该班学生选择A高中观点的人数最多,共有60%×50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%×460°=446°;
(4)∵800×44%=456(人),
∴估计该校初三学生选择“中技”观点的人数约是456人;
(4)该班选择“就业”观点的人数=50×(4-60%-44%)=50×8%=4(人),则该班有4位女同学和4位男生选择“就业”观点,
列表如下:
共有44种等可能的结果数,其中出现4女的情况共有4种.
所以恰好选到4位女同学的概率=.
考点:4.列表法与树状图法;4.用样本估计总体;4.扇形统计图.
19、
【解析】
画树状图展示所有9种等可能的结果数,再找出两次抽取的牌上的数字都是偶数的结果数,然后根据概率公式求解.
【详解】
画树状图为:
共有9种等可能的结果数,其中两次抽取的牌上的数字都是偶数的结果数为2,
所以两次抽取的牌上的数字都是偶数的概率==.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
20、(1)见解析;(2)2.
【解析】
(1)根据相似三角形的判定,易证△ABF∽△BEC,从而可以证明∠BAF=∠CBE成立;
(2)根据锐角三角函数和三角形的相似可以求得AF的长
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,AD=BC,
∴∠D+∠C=180°,∠ABF=∠BEC,
∵∠AFB+∠AFE=180°,∠AFE=∠D,
∴∠C=∠AFB,
∴△ABF∽△BEC,
∴∠BAF=∠CBE;
(2)∵AE⊥DC,AD=5,AB=8,sin∠D=,
∴AE=4,DE=3
∴EC=5
∵AE⊥DC,AB∥DC,
∴∠AED=∠BAE=90°,
在Rt△ABE中,根据勾股定理得:BE=
∵BC=AD=5,
由(1)得:△ABF∽△BEC,
∴ ==
即 ==
解得:AF=BF=2
【点睛】
本题考查相似三角形的判定与性质、平行四边形的性质、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答
21、(1)E(2,1);(2);(1).
【解析】
(1)先确定出点C坐标,进而得出点F坐标,即可得出结论;
(2)先确定出点F的横坐标,进而表示出点F的坐标,得出CF,同理表示出CE,即可得出结论;
(1)先判断出△EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出结论.
【详解】
(1)∵OA=1,OB=4,
∴B(4,0),C(4,1),
∵F是BC的中点,
∴F(4,),
∵F在反比例y=函数图象上,
∴k=4×=6,
∴反比例函数的解析式为y=,
∵E点的坐标为1,
∴E(2,1);
(2)∵F点的横坐标为4,
∴F(4,),
∴CF=BC﹣BF=1﹣=
∵E的纵坐标为1,
∴E(,1),
∴CE=AC﹣AE=4﹣=,
在Rt△CEF中,tan∠EFC=,
(1)如图,由(2)知,CF=,CE=,,
过点E作EH⊥OB于H,
∴EH=OA=1,∠EHG=∠GBF=90°,
∴∠EGH+∠HEG=90°,
由折叠知,EG=CE,FG=CF,∠EGF=∠C=90°,
∴∠EGH+∠BGF=90°,
∴∠HEG=∠BGF,
∵∠EHG=∠GBF=90°,
∴△EHG∽△GBF,
∴,
∴,
∴BG=,
在Rt△FBG中,FG2﹣BF2=BG2,
∴()2﹣()2=,
∴k=,
∴反比例函数解析式为y=.
点睛:此题是反比例函数综合题,主要考查了待定系数法,中点坐标公式,相似三角形的判定和性质,锐角三角函数,求出CE:CF是解本题的关键.
22、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.
【解析】
(1)根据图形平移的性质画出平移后的△DEC即可;
(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.
【详解】
(1)如图所示;
(2)四边形OCED是菱形.
理由:∵△DEC由△AOB平移而成,
∴AC∥DE,BD∥CE,OA=DE,OB=CE,
∴四边形OCED是平行四边形.
∵四边形ABCD是矩形,
∴OA=OB,
∴DE=CE,
∴四边形OCED是菱形.
【点睛】
本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.
23、当x=-1时,原式=; 当x=1时,原式=
【解析】
先将括号外的分式进行因式分解,再把括号内的分式通分,然后按照分式的除法法则,将除法转化为乘法进行计算.
【详解】
原式=
=
=
∵-<x<,且x为整数,
∴若使分式有意义,x只能取-1和1
当x=1时,原式=.或:当x=-1时,原式=1
24、(1)作图见解析;(2)3;(3)
【解析】
(1)根据发了3条箴言的人数与所占的百分比列式计算即可求出该班全体团员的总人数为12,再求出发了4条箴言的人数,然后补全统计图即可;
(2)利用该班团员在这一个月内所发箴言的总条数除以总人数即可求得结果;
(3)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可.
【详解】
解:(1)该班团员人数为:3÷25%=12(人),
发了4条赠言的人数为:12−2−2−3−1=4(人),
将条形统计图补充完整如下:
(2)该班团员所发赠言的平均条数为:(2×1+2×2+3×3+4×4+1×5)÷12=3,
故答案为:3;
(3)∵发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,
∴发了3条箴言的同学中有一位女同学,发了4条箴言的同学中有一位男同学,
方法一:列表得:
共有12种结果,且每种结果的可能性相同,所选两位同学中恰好是一位男同学和一位女同学的情况有7种,
所选两位同学中恰好是一位男同学和一位女同学的概率为:;
方法二:画树状图如下:
共有12种结果,且每种结果的可能性相同,所选两位同学中恰好是一位男同学和一位女同学的情况有7种,
所选两位同学中恰好是一位男同学和一位女同学的概率为:;
【点睛】
此题考查了树状图法与列表法求概率,以及条形统计图与扇形统计图的知识.注意平均条数=总条数÷总人数;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
内蒙古乌海市名校2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份内蒙古乌海市名校2021-2022学年中考数学考试模拟冲刺卷含解析,共28页。试卷主要包含了若等式,下列调查中,最适合采用全面调查等内容,欢迎下载使用。
内蒙古巴彦淖尔市名校2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份内蒙古巴彦淖尔市名校2021-2022学年中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,若=1,则符合条件的m有等内容,欢迎下载使用。
2022届内蒙古包头市中考数学考试模拟冲刺卷含解析: 这是一份2022届内蒙古包头市中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列二次根式,最简二次根式是,关于x的正比例函数,y=等内容,欢迎下载使用。