2021-2022学年内蒙古北京八中学乌兰察布分校毕业升学考试模拟卷数学卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.如图,与∠1是内错角的是( )
A.∠2 B.∠3
C.∠4 D.∠5
2.如图,△ABC的面积为8cm2 , AP垂直∠B的平分线BP于P,则△PBC的面积为( )
A.2cm2 B.3cm2 C.4cm2 D.5cm2
3.在实数0,-π,,-4中,最小的数是( )
A.0 B.-π C. D.-4
4.一、单选题
如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )
A.75° B.80° C.85° D.90°
5.如图,圆O是等边三角形内切圆,则∠BOC的度数是( )
A.60° B.100° C.110° D.120°
6.若矩形的长和宽是方程x2-7x+12=0的两根,则矩形的对角线长度为( )
A.5 B.7 C.8 D.10
7.下面调查方式中,合适的是( )
A.调查你所在班级同学的体重,采用抽样调查方式
B.调查乌金塘水库的水质情况,采用抽样调査的方式
C.调查《CBA联赛》栏目在我市的收视率,采用普查的方式
D.要了解全市初中学生的业余爱好,采用普查的方式
8.如图,已知点A,B分别是反比例函数y=(x<0),y=(x>0)的图象上的点,且∠AOB=90°,tan∠BAO=,则k的值为( )
A.2 B.﹣2 C.4 D.﹣4
9.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是( )
A. B. C. D.
10.如果关于x的方程没有实数根,那么c在2、1、0、中取值是( )
A.; B.; C.; D..
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是_____.
12.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
(1)计算△ABC的周长等于_____.
(2)点P、点Q(不与△ABC的顶点重合)分别为边AB、BC上的动点,4PB=5QC,连接AQ、PC.当AQ⊥PC时,请在如图所示的网格中,用无刻度的直尺,画出线段AQ、PC,并简要说明点P、Q的位置是如何找到的(不要求证明).
___________________________.
13.已知:如图,矩形ABCD中,AB=5,BC=3,E为AD上一点,把矩形ABCD沿BE折叠,若点A恰好落在CD上点F处,则AE的长为_____.
14.如果a,b分别是2016的两个平方根,那么a+b﹣ab=___.
15.如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为 .
16.已知图中的两个三角形全等,则∠1等于____________.
三、解答题(共8题,共72分)
17.(8分)化简分式,并从0、1、2、3这四个数中取一个合适的数作为x的值代入求值.
18.(8分)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.
(1)求两次传球后,球恰在B手中的概率;
(2)求三次传球后,球恰在A手中的概率.
19.(8分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
20.(8分)某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.
21.(8分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将△ABC绕点D顺时针旋转90°画出旋转后的图形△A1B1C1;在网格中将△ABC放大2倍得到△DEF,使A与D为对应点.
22.(10分)如图,在矩形纸片ABCD中,AB=6,BC=1.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.
(1)求证:△ABG≌△C′DG;
(2)求tan∠ABG的值;
(3)求EF的长.
23.(12分)已知关于的二次函数
(1)当时,求该函数图像的顶点坐标.
(2)在(1)条件下,为该函数图像上的一点,若关于原点的对称点也落在该函数图像上,求的值
(3)当函数的图像经过点(1,0)时,若是该函数图像上的两点,试比较与的大小.
24.一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.求y关于x的函数关系式;(不需要写定义域)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
由内错角定义选B.
2、C
【解析】
延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.
【详解】
延长AP交BC于E.
∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.
在△APB和△EPB中,∵,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCES△ABC=4cm1.
故选C.
【点睛】
本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCES△ABC.
3、D
【解析】
根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.
【详解】
∵正数大于0和一切负数,
∴只需比较-π和-1的大小,
∵|-π|<|-1|,
∴最小的数是-1.
故选D.
【点睛】
此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.
4、A
【解析】
分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.
详解:∵AD是BC边上的高,∠ABC=60°,
∴∠BAD=30°,
∵∠BAC=50°,AE平分∠BAC,
∴∠BAE=25°,
∴∠DAE=30°﹣25°=5°,
∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,
∴∠EAD+∠ACD=5°+70°=75°,
故选A.
点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.
5、D
【解析】
由三角形内切定义可知OB、OC是∠ABC、∠ACB的角平分线,所以可得到关系式∠OBC+∠OCB=(∠ABC+∠ACB),把对应数值代入即可求得∠BOC的值.
【详解】
解:∵△ABC是等边三角形,
∴∠A=∠ABC=∠ACB=60°,
∵圆O是等边三角形内切圆,
∴OB、OC是∠ABC、∠ACB的角平分线,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,
∴∠BOC=180°﹣60=120°,
故选D.
【点睛】
此题主要考查了三角形的内切圆与内心以及切线的性质.关键是要知道关系式∠OBC+∠OCB=(∠ABC+∠ACB).
6、A
【解析】
解:设矩形的长和宽分别为a、b,则a+b=7,ab=12,所以矩形的对角线长====1.故选A.
7、B
【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
A、调查你所在班级同学的体重,采用普查,故A不符合题意;
B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;
C、调查《CBA联赛》栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;
D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;
故选B.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
8、D
【解析】
首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A,B分别在反比例函数y= (x<0),y=(x>0)的图象上,即可得S△OBD= ,S△AOC=|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k的值
【详解】
解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,
∴∠ACO=∠ODB=90°,
∴∠OBD+∠BOD=90°,
∵∠AOB=90°,
∴∠BOD+∠AOC=90°,
∴∠OBD=∠AOC,
∴△OBD∽△AOC,
又∵∠AOB=90°,tan∠BAO= ,
∴=,
∴ = ,即 ,
解得k=±4,
又∵k<0,
∴k=-4,
故选:D.
【点睛】
此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法。
9、B
【解析】
主视图、俯视图是分别从物体正面、上面看,所得到的图形.
【详解】
综合主视图和俯视图,底层最少有个小立方体,第二层最少有个小立方体,因此搭成这个几何体的小正方体的个数最少是个.
故选:B.
【点睛】
此题考查由三视图判断几何体,解题关键在于识别图形
10、A
【解析】
分析:由方程根的情况,根据根的判别式可求得c的取值范围,则可求得答案.
详解:∵关于x的方程x1+1x+c=0没有实数根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故选A.
点睛:本题主要考查了根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、(2n﹣1,2n﹣1).
【解析】
解:∵y=x-1与x轴交于点A1,
∴A1点坐标(1,0),
∵四边形A1B1C1O是正方形,
∴B1坐标(1,1),
∵C1A2∥x轴,
∴A2坐标(2,1),
∵四边形A2B2C2C1是正方形,
∴B2坐标(2,3),
∵C2A3∥x轴,
∴A3坐标(4,3),
∵四边形A3B3C3C2是正方形,
∴B3(4,7),
∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,
∴Bn坐标(2n-1,2n-1).
故答案为(2n-1,2n-1).
12、12 连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P.
【解析】
(1)利用勾股定理求出AB,从而得到△ABC的周长;
(2) 取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AP,CQ即为所求.
【详解】
解:(1)∵AC=3,BC=4,∠C=90º,
∴根据勾股定理得AB=5,
∴△ABC的周长=5+4+3=12.
(2)取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AQ,CP即为所求。
故答案为:(1)12;(2)连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P.
【点睛】
本题涉及的知识点有:勾股定理,三角形中位线定理,轴对称之线路最短问题.
13、
【解析】
根据矩形的性质得到CD=AB=5,AD=BC=3,∠D=∠C=90°,根据折叠得到BF=AB=5,EF=EA,根据勾股定理求出CF,由此得到DF的长,再根据勾股定理即可求出AE.
【详解】
∵矩形ABCD中,AB=5,BC=3,
∴CD=AB=5,AD=BC=3,∠D=∠C=90°,
由折叠的性质可知,BF=AB=5,EF=EA,
在Rt△BCF中,CF==4,
∴DF=DC﹣CF=1,
设AE=x,则EF=x,DE=3﹣x,
在Rt△DEF中,EF2=DE2+DF2,即x2=(3﹣x)2+12,
解得,x=,
故答案为:.
【点睛】
此题考查矩形的性质,勾股定理,折叠的性质,由折叠得到BF的长度是解题的关键.
14、1
【解析】
先由平方根的应用得出a,b的值,进而得出a+b=0,代入即可得出结论.
【详解】
∵a,b分别是1的两个平方根,
∴
∵a,b分别是1的两个平方根,
∴a+b=0,
∴ab=a×(﹣a)=﹣a2=﹣1,
∴a+b﹣ab=0﹣(﹣1)=1,
故答案为:1.
【点睛】
此题主要考查了平方根的性质和意义,解本题的关键是熟练掌握平方根的性质.
15、﹣1
【解析】
∵OD=2AD,
∴,
∵∠ABO=90°,DC⊥OB,
∴AB∥DC,
∴△DCO∽△ABO,
∴,
∴,
∵S四边形ABCD=10,
∴S△ODC=8,
∴OC×CD=8,
OC×CD=1,
∴k=﹣1,
故答案为﹣1.
16、58°
【解析】
如图,∠2=180°−50°−72°=58°,
∵两个三角形全等,
∴∠1=∠2=58°.
故答案为58°.
三、解答题(共8题,共72分)
17、x取0时,为1 或x取1时,为2
【解析】
试题分析:利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.
试题解析:解:原式=[]
=
=
= x+1,
∵x1-4≠0,x-2≠0,
∴x≠1且x≠-1且x≠2,
当x=0时,原式=1.
或当x=1时,原式=2.
18、(1);(2) .
【解析】
试题分析:(1)直接列举出两次传球的所有结果,球球恰在B手中的结果只有一种即可求概率;(2)画出树状图,表示出三次传球的所有结果,三次传球后,球恰在A手中的结果有2种,即可求出三次传球后,球恰在A手中的概率.
试题解析:
解:(1)两次传球的所有结果有4种,分别是A→B→C,A→B→A,A→C→B,A→C→A.每种结果发生的可能性相等,球球恰在B手中的结果只有一种,所以两次传球后,球恰在B手中的概率是;
(2)树状图如下,
由树状图可知,三次传球的所有结果有8种,每种结果发生的可能性相等.其中,三次传球后,球恰在A手中的结果有A→B→C→A,A→C→B→A这两种,所以三次传球后,球恰在A手中的概率是.
考点:用列举法求概率.
19、(1)y=﹣20x+1600;
(2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;
(3)超市每天至少销售粽子440盒.
【解析】
试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;
(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.
试题解析:(1)由题意得,==;
(2)P===,∵x≥45,a=﹣20<0,∴当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;
(3)由题意,得=6000,解得,,∵抛物线P=的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润,又∵x≤58,∴50≤x≤58,∵在中,<0,∴y随x的增大而减小,∴当x=58时,y最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.
考点:二次函数的应用.
20、(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队承包该项工程.
【解析】
(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;
(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.
【详解】
(1)设甲工程队单独完成该工程需天,则乙工程队单独完成该工程需天.
根据题意得:
方程两边同乘以,得
解得:
经检验,是原方程的解.
∴当时,.
答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天.
(2)因为甲乙两工程队均能在规定的35天内单独完成,所以有如下三种方案:
方案一:由甲工程队单独完成.所需费用为:(万元);
方案二:由乙工程队单独完成.所需费用为:(万元);
方案三:由甲乙两队合作完成.所需费用为:(万元).
∵∴应该选择甲工程队承包该项工程.
【点睛】
本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
21、(1)见解析(2)见解析
【解析】
(1)根据旋转变换的定义和性质求解可得;
(2)根据位似变换的定义和性质求解可得.
【详解】
解:(1)如图所示,△A1B1C1即为所求;
(2)如图所示,△DEF即为所求.
【点睛】
本题主要考查作图﹣位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.
22、(1)证明见解析(2)7/24(3)25/6
【解析】(1)证明:∵△BDC′由△BDC翻折而成,
∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE。
在△ABG≌△C′DG中,∵∠BAG=∠C,AB= C′D,∠ABG=∠AD C′,
∴△ABG≌△C′DG(ASA)。
(2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD。
设AG=x,则GB=1﹣x,
在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(1﹣x)2,解得x=。
∴。
(3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD。∴HD=AD=4。
∵tan∠ABG=tan∠ADE=。∴EH=HD×=4×。
∵EF垂直平分AD,AB⊥AD,∴HF是△ABD的中位线。∴HF=AB=×6=3。
∴EF=EH+HF=。
(1)根据翻折变换的性质可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出结论。
(2)由(1)可知GD=GB,故AG+GB=AD,设AG=x,则GB=1-x,在Rt△ABG中利用勾股定理即可求出AG的长,从而得出tan∠ABG的值。
(3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根据tan∠ABG的值即可得出EH的长,同理可得HF是△ABD的中位线,故可得出HF的长,由EF=EH+HF即可得出结果。
23、(1) ,顶点坐标(1,-4);(2)m=1;(3)①当a>0时,y2>y1 ,②当a<0时,y1>y2 .
【解析】
试题分析:
(1)把a=2,b=4代入并配方,即可求出此时二次函数图象的顶点坐标;
(2)由题意把(m,t)和(-m,-t)代入(1)中所得函数的解析式,解方程组即可求得m的值;
(3)把点(1,0)代入可得b=a-2,由此可得抛物线的对称轴为直线:,再分a>0和a<0两种情况分别讨论即可y1和y2的大小关系了.
试题解析:
(1)把a=2,b=4代入得:,
∴此时二次函数的图象的顶点坐标为(1,-4);
(2)由题意,把(m,t)和(-m,-t)代入得:
①,②,
由①+②得:,解得:;
(3)把点(1,0)代入得a-b-2=0,
∴b=a-2,
∴此时该二次函数图象的对称轴为直线:,
①当a>0时,,,
∵此时,且抛物线开口向上,
∴中,点B距离对称轴更远,
∴y1
∵此时,且抛物线开口向下,
∴中,点B距离对称轴更远,
∴y1>y2;
综上所述,当a>0时,y1
点睛:在抛物线上:(1)当抛物线开口向上时,抛物线上的点到对称轴的距离越远,所对应的函数值就越大;(2)当抛物线开口向下时,抛物线上的点到对称轴的距离越近,所对应的函数值就越大;
24、(1)该一次函数解析式为y=﹣x+1.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
【解析】
【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;
(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.
【详解】(1)设该一次函数解析式为y=kx+b,
将(150,45)、(0,1)代入y=kx+b中,得
,解得:,
∴该一次函数解析式为y=﹣x+1;
(2)当y=﹣x+1=8时,
解得x=520,
即行驶520千米时,油箱中的剩余油量为8升.
530﹣520=10千米,
油箱中的剩余油量为8升时,距离加油站10千米,
∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.
河北省霸州市部分校2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份河北省霸州市部分校2021-2022学年毕业升学考试模拟卷数学卷含解析,共22页。
北京市第八中学2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份北京市第八中学2021-2022学年毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了小手盖住的点的坐标可能为等内容,欢迎下载使用。
2022届内蒙古北京八中学乌兰察布分校毕业升学考试模拟卷数学卷含解析: 这是一份2022届内蒙古北京八中学乌兰察布分校毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。