终身会员
搜索
    上传资料 赚现金
    2021-2022学年南省洛阳市偃师县重点名校中考数学四模试卷含解析
    立即下载
    加入资料篮
    2021-2022学年南省洛阳市偃师县重点名校中考数学四模试卷含解析01
    2021-2022学年南省洛阳市偃师县重点名校中考数学四模试卷含解析02
    2021-2022学年南省洛阳市偃师县重点名校中考数学四模试卷含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年南省洛阳市偃师县重点名校中考数学四模试卷含解析

    展开
    这是一份2021-2022学年南省洛阳市偃师县重点名校中考数学四模试卷含解析,共25页。试卷主要包含了下列事件中,属于必然事件的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列命题中真命题是( )
    A.若a2=b2,则a=b B.4的平方根是±2
    C.两个锐角之和一定是钝角 D.相等的两个角是对顶角
    2.下列各式:①3+3=6;②=1;③+==2;④=2;其中错误的有( ).
    A.3个 B.2个 C.1个 D.0个
    3.已知x2-2x-3=0,则2x2-4x的值为( )
    A.-6 B.6 C.-2或6 D.-2或30
    4.如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=(  )

    A.30° B.40° C.50° D.60°
    5.某校今年共毕业生297人,其中女生人数为男生人数的65%,则该校今年的女毕业生有()
    A.180人 B.117人 C.215人 D.257人
    6.有两组数据,A组数据为2、3、4、5、6;B组数据为1、7、3、0、9,这两组数据的( )
    A.中位数相等 B.平均数不同 C.A组数据方差更大 D.B组数据方差更大
    7.下列性质中菱形不一定具有的性质是( )
    A.对角线互相平分 B.对角线互相垂直
    C.对角线相等 D.既是轴对称图形又是中心对称图形
    8.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是(  )
    A.30° B.60° C.30°或150° D.60°或120°
    9.如图是某几何体的三视图,则该几何体的全面积等于(  )

    A.112 B.136 C.124 D.84
    10.下列事件中,属于必然事件的是( )
    A.三角形的外心到三边的距离相等
    B.某射击运动员射击一次,命中靶心
    C.任意画一个三角形,其内角和是 180°
    D.抛一枚硬币,落地后正面朝上
    二、填空题(共7小题,每小题3分,满分21分)
    11.观察下列图形,若第1个图形中阴影部分的面积为1,第2个图形中阴影部分的面积为,第3个图形中阴影部分的面积为,第4个图形中阴影部分的面积为,…则第n个图形中阴影部分的面积为_____.(用字母n表示)

    12.如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使三角板的0cm刻度线与量角器的0°线在同一直线上,且直径DC是直角边BC的两倍,过点A作量角器圆弧所在圆的切线,切点为E,则点E在量角器上所对应的度数是____.

    13.据国家旅游局数据中心综合测算,2018年春节全国共接待游客3.86亿人次,将“3.86亿”用科学计数法表示,可记为____________.
    14.如图,在△ABC中,∠ACB=90°,点D是CB边上一点,过点D作DE⊥AB于点E,点F是AD的中点,连结EF、FC、CE.若AD=2,∠CFE=90°,则CE=_____.

    15.已知二次函数,与的部分对应值如下表所示:


    -1
    0
    1
    2
    3
    4



    6
    1
    -2
    -3
    -2
    m

    下面有四个论断:
    ①抛物线的顶点为;
    ②;
    ③关于的方程的解为;
    ④.
    其中,正确的有___________________.
    16.如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为 cm.
    17.方程的解是__________.
    三、解答题(共7小题,满分69分)
    18.(10分)已知边长为2a的正方形ABCD,对角线AC、BD交于点Q,对于平面内的点P与正方形ABCD,给出如下定义:如果,则称点P为正方形ABCD的“关联点”.在平面直角坐标系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).

    (1)在,,中,正方形ABCD的“关联点”有_____;
    (2)已知点E的横坐标是m,若点E在直线上,并且E是正方形ABCD的“关联点”,求m的取值范围;
    (3)若将正方形ABCD沿x轴平移,设该正方形对角线交点Q的横坐标是n,直线与x轴、y轴分别相交于M、N两点.如果线段MN上的每一个点都是正方形ABCD的“关联点”,求n的取值范围.
    19.(5分)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM,垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.求证:AM是⊙O的切线;若⊙O的半径为4,求图中阴影部分的面积(结果保留π和根号).

    20.(8分)如图,已知△ABC中,AB=AC=5,cosA=.求底边BC的长.

    21.(10分)如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P是该抛物线上一动点,设点P的横坐标为m(m>4).
    (1)求该抛物线的表达式和∠ACB的正切值;
    (2)如图2,若∠ACP=45°,求m的值;
    (3)如图3,过点A、P的直线与y轴于点N,过点P作PM⊥CD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由.

    22.(10分)如图,在平面直角坐标系xOy中,一次函数y=x与反比例函数的图象相交于点.

    (1)求a、k的值;
    (2)直线x=b()分别与一次函数y=x、反比例函数的图象相交于点M、N,当MN=2时,画出示意图并直接写出b的值.
    23.(12分)在平面直角坐标系中,某个函数图象上任意两点的坐标分别为(﹣t,y1)和(t,y2)(其中t为常数且t>0),将x<﹣t的部分沿直线y=y1翻折,翻折后的图象记为G1;将x>t的部分沿直线y=y2翻折,翻折后的图象记为G2,将G1和G2及原函数图象剩余的部分组成新的图象G.
    例如:如图,当t=1时,原函数y=x,图象G所对应的函数关系式为y=.

    (1)当t=时,原函数为y=x+1,图象G与坐标轴的交点坐标是  .
    (2)当t=时,原函数为y=x2﹣2x
    ①图象G所对应的函数值y随x的增大而减小时,x的取值范围是  .
    ②图象G所对应的函数是否有最大值,如果有,请求出最大值;如果没有,请说明理由.
    (3)对应函数y=x2﹣2nx+n2﹣3(n为常数).
    ①n=﹣1时,若图象G与直线y=2恰好有两个交点,求t的取值范围.
    ②当t=2时,若图象G在n2﹣2≤x≤n2﹣1上的函数值y随x的增大而减小,直接写出n的取值范围.
    24.(14分)解分式方程:=



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.
    【详解】
    A、若a2=b2,则a=±b,错误,是假命题;
    B、4的平方根是±2,正确,是真命题;
    C、两个锐角的和不一定是钝角,故错误,是假命题;
    D、相等的两个角不一定是对顶角,故错误,是假命题.
    故选B.
    【点睛】
    考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.
    2、A
    【解析】
    3+3=6,错误,无法计算;② =1,错误;③+==2不能计算;④=2,正确.
    故选A.
    3、B
    【解析】
    方程两边同时乘以2,再化出2x2-4x求值.
    解:x2-2x-3=0
    2×(x2-2x-3)=0
    2×(x2-2x)-6=0
    2x2-4x=6
    故选B.
    4、D
    【解析】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故选D.
    点睛:本题考查的是平行线的性质,熟知两直线平行,同位角相等是解答此题的关键.
    5、B
    【解析】
    设男生为x人,则女生有65%x人,根据今年共毕业生297人列方程求解即可.
    【详解】
    设男生为x人,则女生有65%x人,由题意得,
    x+65%x=297,
    解之得
    x=180,
    297-180=117人.
    故选B.
    【点睛】
    本题考查了一元一次方程的应用,根据题意找出等量关系列出方程是解答本题的关键.
    6、D
    【解析】
    分别求出两组数据的中位数、平均数、方差,比较即可得出答案.
    【详解】
    A组数据的中位数是:4,平均数是:(2+3+4+5+6) ÷5=4,
    方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2] ÷5=2;
    B组数据的中位数是:3,平均数是:(1+7+3+0+9) ÷5=4,
    方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2] ÷5=12;
    ∴两组数据的中位数不相等,平均数相等,B组方差更大.
    故选D.
    【点睛】
    本题考查了中位数、平均数、方差的计算,熟练掌握中位数、平均数、方差的计算方法是解答本题的关键.
    7、C
    【解析】
    根据菱形的性质:①菱形具有平行四边形的一切性质; ②菱形的四条边都相等; ③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角; ④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.
    【详解】
    解:A、菱形的对角线互相平分,此选项正确;
    B、菱形的对角线互相垂直,此选项正确;
    C、菱形的对角线不一定相等,此选项错误;
    D、菱形既是轴对称图形又是中心对称图形,此选项正确;
    故选C.
    考点:菱形的性质
    8、D
    【解析】
    【分析】由图可知,OA=10,OD=1.根据特殊角的三角函数值求出∠AOB的度数,再根据圆周定理求出∠C的度数,再根据圆内接四边形的性质求出∠E的度数即可.
    【详解】由图可知,OA=10,OD=1,
    在Rt△OAD中,
    ∵OA=10,OD=1,AD==,
    ∴tan∠1=,∴∠1=60°,
    同理可得∠2=60°,
    ∴∠AOB=∠1+∠2=60°+60°=120°,
    ∴∠C=60°,
    ∴∠E=180°-60°=120°,
    即弦AB所对的圆周角的度数是60°或120°,
    故选D.

    【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.
    9、B
    【解析】
    试题解析:该几何体是三棱柱.
    如图:

    由勾股定理

    全面积为:
    故该几何体的全面积等于1.
    故选B.
    10、C
    【解析】
    分析:必然事件就是一定发生的事件,依据定义即可作出判断.
    详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;
    B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;
    C、三角形的内角和是180°,是必然事件,故本选项符合题意;
    D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;
    故选C.
    点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.

    二、填空题(共7小题,每小题3分,满分21分)
    11、n﹣1(n为整数)
    【解析】
    试题分析:观察图形可得,第1个图形中阴影部分的面积=()0=1;第2个图形中阴影部分的面积=()1=;第3个图形中阴影部分的面积=()2=;第4个图形中阴影部分的面积=()3=;…根据此规律可得第n个图形中阴影部分的面积=()n-1(n为整数)•
    考点:图形规律探究题.
    12、60.
    【解析】
    首先设半圆的圆心为O,连接OE,OA,由题意易得AC是线段OB的垂直平分线,即可求得∠AOC=∠ABC=60°,又由AE是切线,易证得Rt△AOE≌Rt△AOC,继而求得∠AOE的度数,则可求得答案.
    【详解】
    设半圆的圆心为O,连接OE,OA,
    ∵CD=2OC=2BC,
    ∴OC=BC,
    ∵∠ACB=90°,即AC⊥OB,
    ∴OA=BA,
    ∴∠AOC=∠ABC,
    ∵∠BAC=30°,
    ∴∠AOC=∠ABC=60°,
    ∵AE是切线,
    ∴∠AEO=90°,
    ∴∠AEO=∠ACO=90°,
    ∵在Rt△AOE和Rt△AOC中,

    ∴Rt△AOE≌Rt△AOC(HL),
    ∴∠AOE=∠AOC=60°,
    ∴∠EOD=180°﹣∠AOE﹣∠AOC=60°,
    ∴点E所对应的量角器上的刻度数是60°,
    故答案为:60.

    【点睛】
    本题考查了切线的性质、全等三角形的判定与性质以及垂直平分线的性质,解题的关键是掌握辅助线的作法,注意掌握数形结合思想的应用.
    13、3.86×108
    【解析】
    根据科学记数法的表示(a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数)形式可得:
    3.86亿=386000000=3.86×108.
    故答案是:3.86×108.
    14、
    【解析】
    根据直角三角形的中点性质结合勾股定理解答即可.
    【详解】
    解:,点F是AD的中点,

    .
    故答案为: .
    【点睛】
    此题重点考查学生对勾股定理的理解。熟练掌握勾股定理是解题的关键.
    15、①③.
    【解析】
    根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.
    【详解】
    由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:
    该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;
    ①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;
    ②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;
    ③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;
    ④m=﹣3,结论错误,
    其中,正确的有. ①③
    故答案为:①③
    【点睛】
    本题考查了二次函数的图像,结合图表信息是解题的关键.
    16、8
    【解析】
    试题分析:根据线段垂直平分线的性质得,BD=CD,则AB=AD+CD,所以,△ACD的周长=AD+CD+AC=AB+AC,解答出即可
    解:
    ∵DE是BC的垂直平分线,
    ∴BD=CD,
    ∴AB=AD+BD=AD+CD,
    ∴△ACD的周长=AD+CD+AC=AB+AC=8cm;
    故答案为8
    考点:线段垂直平分线的性质
    点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等
    17、x=1
    【解析】
    将方程两边平方后求解,注意检验.
    【详解】
    将方程两边平方得x-3=4,
    移项得:x=1,
    代入原方程得=2,原方程成立,
    故方程=2的解是x=1.
    故本题答案为:x=1.
    【点睛】
    在解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验.

    三、解答题(共7小题,满分69分)
    18、(1)正方形ABCD的“关联点”为P2,P3;(2)或;(3).
    【解析】
    (1)正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断;
    (2)因为E是正方形ABCD的“关联点”,所以E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),因为E在直线上,推出点E在线段FG上,求出点F、G的横坐标,再根据对称性即可解决问题;
    (3)因为线段MN上的每一个点都是正方形ABCD的“关联点”,分两种情形:①如图3中,MN与小⊙Q相切于点F,求出此时点Q的横坐标;②M如图4中,落在大⊙Q上,求出点Q的横坐标即可解决问题;
    【详解】
    (1)由题意正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),

    观察图象可知:正方形ABCD的“关联点”为P2,P3;
    (2)作正方形ABCD的内切圆和外接圆,

    ∴OF=1,,.
    ∵E是正方形ABCD的“关联点”,
    ∴E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),
    ∵点E在直线上,
    ∴点E在线段FG上.
    分别作FF’⊥x轴,GG’⊥x轴,
    ∵OF=1,,
    ∴,.
    ∴.
    根据对称性,可以得出.
    ∴或.
    (3)∵、N(0,1),
    ∴,ON=1.
    ∴∠OMN=60°.
    ∵线段MN上的每一个点都是正方形ABCD
    的“关联点”,
    ①MN与小⊙Q相切于点F,如图3中,

    ∵QF=1,∠OMN=60°,
    ∴.
    ∵,
    ∴.
    ∴.
    ②M落在大⊙Q上,如图4中,

    ∵,,
    ∴.
    ∴.
    综上:.
    【点睛】
    本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.
    19、 (1)见解析;(2)
    【解析】
    (1)根据题意,可得△BOC的等边三角形,进而可得∠BCO=∠BOC,根据角平分线的性质,可证得BD∥OA,根据∠BDM=90°,进而得到∠OAM=90°,即可得证;
    (2)连接AC,利用△AOC是等边三角形,求得∠OAC=60°,可得∠CAD=30°,在直角三角形中,求出CD、AD的长,则S阴影=S梯形OADC﹣S扇形OAC即可得解.
    【详解】
    (1)证明:∵∠B=60°,OB=OC,
    ∴△BOC是等边三角形,
    ∴∠1=∠3=60°,
    ∵OC平分∠AOB,
    ∴∠1=∠2,
    ∴∠2=∠3,
    ∴OA∥BD,
    ∵∠BDM=90°,
    ∴∠OAM=90°,
    又OA为⊙O的半径,
    ∴AM是⊙O的切线
    (2)解:连接AC,
    ∵∠3=60°,OA=OC,
    ∴△AOC是等边三角形,
    ∴∠OAC=60°,
    ∴∠CAD=30°,
    ∵OC=AC=4,
    ∴CD=2,
    ∴AD=2 ,
    ∴S阴影=S梯形OADC﹣S扇形OAC= ×(4+2)×2﹣.
    【点睛】
    本题主要考查切线的性质与判定、扇形的面积等,解题关键在于用整体减去部分的方法计算.
    20、
    【解析】
    过点B作BD⊥AC,在△ABD中由cosA=可计算出AD的值,进而求出BD的值,再由勾股定理求出BC的值.
    【详解】
    解:

    过点B作BD⊥AC,垂足为点D,
    在Rt△ABD中,,
    ∵,AB=5,
    ∴AD=AB·cosA=5×=3,
    ∴BD=4,
    ∵AC=5,
    ∴DC=2,
    ∴BC=.
    【点睛】
    本题考查了锐角的三角函数和勾股定理的运用.
    21、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四边形ADMQ是平行四边形;理由见解析.
    【解析】
    (1)由点A、B坐标利用待定系数法求解可得抛物线解析式为y=x2-3x+1,作BG⊥CA,交CA的延长线于点G,证△GAB∽△OAC得=,据此知BG=2AG.在Rt△ABG中根据BG2+AG2=AB2,可求得AG=.继而可得BG=,CG=AC+AG=,根据正切函数定义可得答案;
    (2)作BH⊥CD于点H,交CP于点K,连接AK,易得四边形OBHC是正方形,应用“全角夹半角”可得AK=OA+HK,设K(1,h),则BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,据此求得点K(1,).待定系数法求出直线CK的解析式为y=-x+1.设点P的坐标为(x,y)知x是方程x2-3x+1=-x+1的一个解.解之求得x的值即可得出答案;
    (3)先求出点D坐标为(6,1),设P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①当1<m<6时,由△OAN∽△HAP知=.据此得ON=m-1.再证△ONQ∽△HMQ得=.据此求得OQ=m-1.从而得出AQ=DM=6-m.结合AQ∥DM可得答案.②当m>6时,同理可得.
    【详解】
    解:(1)将点A(2,0)和点B(1,0)分别代入y=ax2+bx+1,得,
    解得:;
    ∴该抛物线的解析式为y=x2﹣3x+1,
    过点B作BG⊥CA,交CA的延长线于点G(如图1所示),则∠G=90°.

    ∵∠COA=∠G=90°,∠CAO=∠BAG,
    ∴△GAB∽△OAC.
    ∴=2.
    ∴BG=2AG,
    在Rt△ABG中,∵BG2+AG2=AB2,
    ∴(2AG)2+AG2=22,解得: AG=.
    ∴BG=,CG=AC+AG=2+=.
    在Rt△BCG中,tan∠ACB═.
    (2)如图2,过点B作BH⊥CD于点H,交CP于点K,连接AK.易得四边形OBHC是正方形.

    应用“全角夹半角”可得AK=OA+HK,
    设K(1,h),则BK=h,HK=HB﹣KB=1﹣h,AK=OA+HK=2+(1﹣h)=6﹣h,
    在Rt△ABK中,由勾股定理,得AB2+BK2=AK2,
    ∴22+h2=(6﹣h)2.解得h=,
    ∴点K(1,),
    设直线CK的解析式为y=hx+1,
    将点K(1,)代入上式,得=1h+1.解得h=﹣,
    ∴直线CK的解析式为y=﹣x+1,
    设点P的坐标为(x,y),则x是方程x2﹣3x+1=﹣x+1的一个解,
    将方程整理,得3x2﹣16x=0,
    解得x1=,x2=0(不合题意,舍去)
    将x1=代入y=﹣x+1,得y=,
    ∴点P的坐标为(,),
    ∴m=;
    (3)四边形ADMQ是平行四边形.理由如下:
    ∵CD∥x轴,
    ∴yC=yD=1,
    将y=1代入y=x2﹣3x+1,得1=x2﹣3x+1,
    解得x1=0,x2=6,
    ∴点D(6,1),
    根据题意,得P(m, m2﹣3m+1),M(m,1),H(m,0),
    ∴PH=m2﹣3m+1,OH=m,AH=m﹣2,MH=1,
    ①当1<m<6时,DM=6﹣m,
    如图3,

    ∵△OAN∽△HAP,
    ∴,
    ∴=,
    ∴ON===m﹣1,
    ∵△ONQ∽△HMQ,
    ∴,
    ∴,
    ∴,
    ∴OQ=m﹣1,
    ∴AQ=OA﹣OQ=2﹣(m﹣1)=6﹣m,
    ∴AQ=DM=6﹣m,
    又∵AQ∥DM,
    ∴四边形ADMQ是平行四边形.
    ②当m>6时,同理可得:四边形ADMQ是平行四边形.
    综上,四边形ADMQ是平行四边形.
    【点睛】
    本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、平行四边形的判定与性质及勾股定理、三角函数等知识点.
    22、(1),k=2;(2)b=2或1.
    【解析】
    (1)依据直线y=x与双曲线(k≠0)相交于点,即可得到a、k的值;
    (2)分两种情况:当直线x=b在点A的左侧时,由x=2,可得x=1,即b=1;当直线x=b在点A的右侧时,由x2,可得x=2,即b=2.
    【详解】
    (1)∵直线y=x与双曲线(k≠0)相交于点,∴,∴,∴,解得:k=2;
    (2)如图所示:

    当直线x=b在点A的左侧时,由x=2,可得:x=1,x=﹣2(舍去),即b=1;
    当直线x=b在点A的右侧时,由x2,可得x=2,x=﹣1(舍去),即b=2;
    综上所述:b=2或1.
    【点睛】
    本题考查了利用待定系数法求函数解析式以及函数的图象与解析式的关系,解题时注意:点在图象上,就一定满足函数的解析式.
    23、(1)(2,0);(2)①﹣≤x≤1或x≥;②图象G所对应的函数有最大值为;(3)①;②n≤或n≥.
    【解析】
    (1)根据题意分别求出翻转之后部分的表达式及自变量的取值范围,将y=0代入,求出x值,即可求出图象G与坐标轴的交点坐标;
    (2)画出函数草图,求出翻转点和函数顶点的坐标,①根据图象的增减性可求出y随x的增大而减小时,x的取值范围,②根据图象很容易计算出函数最大值;
    (3)①将n=﹣1代入到函数中求出原函数的表达式,计算y=2时,x的值.据(2)中的图象,函数与y=2恰好有两个交点时t大于右边交点的横坐标且-t大于左边交点的横坐标,据此求解.
    ②画出函数草图,分别计算函数左边的翻转点A,右边的翻转点C,函数的顶点B的横坐标(可用含n的代数式表示),根据函数草图以及题意列出关于n的不等式求解即可.
    【详解】
    (1)当x=时,y=,
    当x≥时,翻折后函数的表达式为:y=﹣x+b,将点(,)坐标代入上式并解得:
    翻折后函数的表达式为:y=﹣x+2,
    当y=0时,x=2,即函数与x轴交点坐标为:(2,0);
    同理沿x=﹣翻折后当时函数的表达式为:y=﹣x,
    函数与x轴交点坐标为:(0,0),因为所以舍去.
    故答案为:(2,0);
    (2)当t=时,由函数为y=x2﹣2x构建的新函数G的图象,如下图所示:

    点A、B分别是t=﹣、t=的两个翻折点,点C是抛物线原顶点,
    则点A、B、C的横坐标分别为﹣、1、,
    ①函数值y随x的增大而减小时,﹣≤x≤1或x≥,
    故答案为:﹣≤x≤1或x≥;
    ②函数在点A处取得最大值,
    x=﹣,y=(﹣)2﹣2×(﹣)=,
    答:图象G所对应的函数有最大值为;
    (3)n=﹣1时,y=x2+2x﹣2,
    ①参考(2)中的图象知:
    当y=2时,y=x2+2x﹣2=2,
    解得:x=﹣1±,
    若图象G与直线y=2恰好有两个交点,则t>﹣1且-t>,
    所以;
    ②函数的对称轴为:x=n,
    令y=x2﹣2nx+n2﹣3=0,则x=n±,
    当t=2时,点A、B、C的横坐标分别为:﹣2,n,2,
    当x=n在y轴左侧时,(n≤0),
    此时原函数与x轴的交点坐标(n+,0)在x=2的左侧,如下图所示,

    则函数在AB段和点C右侧,
    故:﹣2≤x≤n,即:在﹣2≤n2﹣2≤x≤n2﹣1≤n,
    解得:n≤;
    当x=n在y轴右侧时,(n≥0),
    同理可得:n≥;
    综上:n≤或n≥.
    【点睛】
    在做本题时,可先根据题意分别画出函数的草图,根据草图进行分析更加直观.在做第(1)问时,需注意翻转后的函数是分段函数,所以对最终的解要进行分析,排除掉自变量之外的解;(2)根据草图很直观的便可求得;(3)①需注意图象G与直线y=2恰好有两个交点,多于2个交点的要排除;②根据草图和增减性,列出不等式,求解即可.
    24、x=1
    【解析】
    分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】
    方程两边都乘以x(x﹣2),得:x=1(x﹣2),
    解得:x=1,
    检验:x=1时,x(x﹣2)=1×1=1≠0,
    则分式方程的解为x=1.
    【点睛】
    本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.

    相关试卷

    南省郴州市重点名校2022年中考数学四模试卷含解析: 这是一份南省郴州市重点名校2022年中考数学四模试卷含解析,共21页。试卷主要包含了 “a是实数,”这一事件是,下列判断错误的是等内容,欢迎下载使用。

    南省洛阳市偃师县重点名校2022年中考数学全真模拟试题含解析: 这是一份南省洛阳市偃师县重点名校2022年中考数学全真模拟试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是等内容,欢迎下载使用。

    2022年河南省洛阳市偃师县达标名校中考数学押题试卷含解析: 这是一份2022年河南省洛阳市偃师县达标名校中考数学押题试卷含解析,共20页。试卷主要包含了﹣18的倒数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map