2021-2022学年江苏省泰州市部分地区中考数学模拟精编试卷含解析
展开这是一份2021-2022学年江苏省泰州市部分地区中考数学模拟精编试卷含解析,共21页。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是( )个.
A.4个 B.3个 C.2个 D.1个
2.实数﹣5.22的绝对值是( )
A.5.22 B.﹣5.22 C.±5.22 D.
3.国家主席习近平在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现易地扶贫搬迁、有了温暖的新家.”其中3400000用科学记数法表示为( )
A.0.34×107 B.3.4×106 C.3.4×105 D.34×105
4.如图,C,B是线段AD上的两点,若,,则AC与CD的关系为( )
A. B. C. D.不能确定
5.如图是二次函数y =ax2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b2–4ac<0,其中正确的有( )
A.1个 B.2个 C.3个 D.4
6.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.
A. B. C. D.
7.图为一根圆柱形的空心钢管,它的主视图是( )
A. B. C. D.
8.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是 ( )
A.1 B.1.5 C.2 D.2.5
9.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②;③ac-b+1=0;④OA·OB=.其中正确结论的个数是( )
A.4 B.3 C.2 D.1
10.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为( )
A.60 n mile B.60 n mile C.30 n mile D.30 n mile
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如果关于x的方程x2+2ax﹣b2+2=0有两个相等的实数根,且常数a与b互为倒数,那么a+b=_____.
12.在矩形ABCD中,AB=6CM,E为直线CD上一点,连接AC,BE,若AC与BE交与点F, DE=2,则EF:BE= ________ 。
13.将一次函数的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.
14.平面直角坐标系中一点P(m﹣3,1﹣2m)在第三象限,则m的取值范围是_____.
15.二次函数y=x2-2x+1的对称轴方程是x=_______.
16.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的长为 .
三、解答题(共8题,共72分)
17.(8分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图).请回答以下问题:
(1)该班学生选择 观点的人数最多,共有 人,在扇形统计图中,该观点所在扇形区域的圆心角是 度.
(2)利用样本估计该校初三学生选择“中技”观点的人数.
(3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答).
18.(8分)如图,已知二次函数的图象与x轴交于A,B两点,与y轴交于点C,的半径为,P为上一动点.
点B,C的坐标分别为______,______;
是否存在点P,使得为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
连接PB,若E为PB的中点,连接OE,则OE的最大值______.
19.(8分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:
摸球总
次数
10
20
30
60
90
120
180
240
330
450
“和为8”出
现的频数
2
10
13
24
30
37
58
82
110
150
“和为8”出
现的频率
0.20
0.50
0.43
0.40
0.33
0.31
0.32
0.34
0.33
0.33
解答下列问题:如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;如果摸出的2个小球上数字之和为9的概率是,那么x的值可以为7吗?为什么?
20.(8分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;搅匀后,从中任意取一个球,标号为正数的概率是 ; 搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.
21.(8分)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为 且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W元(利润=销售收入﹣成本).m= ,n= ;求销售蓝莓第几天时,当天的利润最大?最大利润是多少?在销售蓝莓的30天中,当天利润不低于870元的共有多少天?
22.(10分)如图,已知:AD 和 BC 相交于点 O,∠A=∠C,AO=2,BO=4,OC=3,求 OD 的长.
23.(12分)某市旅游部门统计了今年“五•一”放假期间该市A、B、C、D四个旅游景区的旅游人数,并绘制出如图所示的条形统计图和扇形统计图,根据图中的信息解答下列问题:
(1)求今年“五•一”放假期间该市这四个景点共接待游客的总人数;
(2)扇形统计图中景点A所对应的圆心角的度数是多少,请直接补全条形统计图;
(3)根据预测,明年“五•一”放假期间将有90万游客选择到该市的这四个景点旅游,请你估计有多少人会选择去景点D旅游?
24.如图1,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα==,根据上述角的余切定义,解下列问题:
(1)如图1,若BC=3,AB=5,则ctanB=_____;
(2)ctan60°=_____;
(3)如图2,已知:△ABC中,∠B是锐角,ctan C=2,AB=10,BC=20,试求∠B的余弦cosB的值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
分析:根据已知画出图象,把x=−2代入得:4a−2b+c=0,把x=−1代入得:y=a−b+c>0,根据不等式的两边都乘以a(a<0)得:c>−2a,由4a−2b+c=0得而0
详解:根据二次函数y=ax2+bx+c的图象与x轴交于点(−2,0)、(x1,0),且1
把x=−2代入得:4a−2b+c=0,∴①正确;
把x=−1代入得:y=a−b+c>0,如图A点,∴②错误;
∵(−2,0)、(x1,0),且1
∴不等式的两边都乘以a(a<0)得:c>−2a,
∴2a+c>0,∴③正确;
④由4a−2b+c=0得
而0
∴2a−b+1>0,
∴④正确.
所以①③④三项正确.
故选B.
点睛:属于二次函数综合题,考查二次函数图象与系数的关系, 二次函数图象上点的坐标特征, 抛物线与轴的交点,属于常考题型.
2、A
【解析】
根据绝对值的性质进行解答即可.
【详解】
实数﹣5.1的绝对值是5.1.
故选A.
【点睛】
本题考查的是实数的性质,熟知绝对值的性质是解答此题的关键.
3、B
【解析】
解:3400000=.
故选B.
4、B
【解析】
由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.
【详解】
∵AB=CD,
∴AC+BC=BC+BD,
即AC=BD,
又∵BC=2AC,
∴BC=2BD,
∴CD=3BD=3AC.
故选B.
【点睛】
本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.
5、B
【解析】
由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
①抛物线与y轴交于负半轴,则c<1,故①正确;
②对称轴x1,则2a+b=1.故②正确;
③由图可知:当x=1时,y=a+b+c<1.故③错误;
④由图可知:抛物线与x轴有两个不同的交点,则b2﹣4ac>1.故④错误.
综上所述:正确的结论有2个.
故选B.
【点睛】
本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
6、B
【解析】
设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.
【详解】
解:设商品的进价为x元,售价为每件0.8×200元,由题意得
0.8×200=x+40
解得:x=120
答:商品进价为120元.
故选:B.
【点睛】
此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.
7、B
【解析】
试题解析:从正面看是三个矩形,中间矩形的左右两边是虚线,
故选B.
8、C
【解析】
连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.
【详解】
连接AE,
∵AB=AD=AF,∠D=∠AFE=90°,
由折叠的性质得:Rt△ABG≌Rt△AFG,
在△AFE和△ADE中,
∵AE=AE,AD=AF,∠D=∠AFE,
∴Rt△AFE≌Rt△ADE,
∴EF=DE,
设DE=FE=x,则CG=3,EC=6−x.
在直角△ECG中,根据勾股定理,得:
(6−x)2+9=(x+3)2,
解得x=2.
则DE=2.
【点睛】
熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题关键.
9、B
【解析】
试题分析:由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=,于是OA•OB=﹣,则可对④进行判断.
解:∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴在y轴的右侧,
∴b>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以①正确;
∵抛物线与x轴有2个交点,
∴△=b2﹣4ac>0,
而a<0,
∴<0,所以②错误;
∵C(0,c),OA=OC,
∴A(﹣c,0),
把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,
∴ac﹣b+1=0,所以③正确;
设A(x1,0),B(x2,0),
∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,
∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,
∴x1•x2=,
∴OA•OB=﹣,所以④正确.
故选B.
考点:二次函数图象与系数的关系.
10、B
【解析】
如图,作PE⊥AB于E.
在Rt△PAE中,∵∠PAE=45°,PA=60n mile,
∴PE=AE=×60=n mile,
在Rt△PBE中,∵∠B=30°,
∴PB=2PE=n mile.
故选B.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、±1.
【解析】
根据根的判别式求出△=0,求出a1+b1=1,根据完全平方公式求出即可.
【详解】
解:∵关于x的方程x1+1ax-b1+1=0有两个相等的实数根,
∴△=(1a)1-4×1×(-b1+1)=0,
即a1+b1=1,
∵常数a与b互为倒数,
∴ab=1,
∴(a+b)1=a1+b1+1ab=1+3×1=4,
∴a+b=±1,
故答案为±1.
【点睛】
本题考查了根的判别式和解高次方程,能得出等式a1+b1=1和ab=1是解此题的关键.
12、4:7或2:5
【解析】
根据E在CD上和CD的延长线上,运用相似三角形分类讨论即可.
【详解】
解:当E在线段CD上如图:
∵矩形ABCD
∴AB∥CD
∴△ABF∽△CFE
∴
设,即EF=2k,BF=3k
∴BE=BF+EF=5k
∴EF:BE=2k∶5k=2∶5
当当E在线段CD的延长线上如图:
∵矩形ABCD
∴AB∥CD
∴△ABF∽△CFE
∴
设,即EF=4k,BF=3k
∴BE=BF+EF=7k
∴EF:BE=4k∶7k=4∶7
故答案为:4:7或2:5.
【点睛】
本题以矩形为载体,考查了相似三角形的性质,解题的关键在于根据图形分类讨论,即数形结合的灵活应用.
13、
【解析】
试题分析:解:设y=x+b,
∴3=2+b,解得:b=1.
∴函数解析式为:y=x+1.故答案为y=x+1.
考点:一次函数
点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k的值不变.
14、0.5<m<3
【解析】
根据第三象限内点的横坐标与纵坐标都是负数列式不等式组,然后求解即可.
【详解】
∵点P(m−3,1−2m)在第三象限,
∴,
解得:0.5
本题考查了解一元二次方程组与象限及点的坐标的有关性质,解题的关键是熟练的掌握解一元二次方程组与象限及点的坐标的有关性质.
15、1
【解析】
利用公式法可求二次函数y=x2-2x+1的对称轴.也可用配方法.
【详解】
∵-=-=1,
∴x=1.
故答案为:1
【点睛】
本题考查二次函数基本性质中的对称轴公式;也可用配方法解决.
16、36或4.
【解析】
(3)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,
当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=36,得BE=3.
由翻折的性质,得B′E=BE=3,
∴EG=AG﹣AE=8﹣3=5,
∴B′G===33,
∴B′H=GH﹣B′G=36﹣33=4,
∴DB′===;
(3)当DB′=CD时,则DB′=36(易知点F在BC上且不与点C、B重合);
(3)当CB′=CD时,
∵EB=EB′,CB=CB′,
∴点E、C在BB′的垂直平分线上,
∴EC垂直平分BB′,
由折叠可知点F与点C重合,不符合题意,舍去.
综上所述,DB′的长为36或.故答案为36或.
考点:3.翻折变换(折叠问题);3.分类讨论.
三、解答题(共8题,共72分)
17、(4)A高中观点.4. 446;(4)456人;(4).
【解析】
试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460°乘以选择“A高中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;
(4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;
(4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解.
试题解析:(4)该班学生选择A高中观点的人数最多,共有60%×50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%×460°=446°;
(4)∵800×44%=456(人),
∴估计该校初三学生选择“中技”观点的人数约是456人;
(4)该班选择“就业”观点的人数=50×(4-60%-44%)=50×8%=4(人),则该班有4位女同学和4位男生选择“就业”观点,
列表如下:
共有44种等可能的结果数,其中出现4女的情况共有4种.
所以恰好选到4位女同学的概率=.
考点:4.列表法与树状图法;4.用样本估计总体;4.扇形统计图.
18、(1)B(1,0),C(0,﹣4);(2)点P的坐标为:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1).
【解析】
试题分析:(1)在抛物线解析式中令y=0可求得B点坐标,令x=0可求得C点坐标;
(2)①当PB与⊙相切时,△PBC为直角三角形,如图1,连接BC,根据勾股定理得到BC=5,BP2的值,过P2作P2E⊥x轴于E,P2F⊥y轴于F,根据相似三角形的性质得到 =2,设OC=P2E=2x,CP2=OE=x,得到BE=1﹣x,CF=2x﹣4,于是得到FP2,EP2的值,求得P2的坐标,过P1作P1G⊥x轴于G,P1H⊥y轴于H,同理求得P1(﹣1,﹣2),②当BC⊥PC时,△PBC为直角三角形,根据相似三角形的判定和性质即可得到结论;
(1)如图1中,连接AP,由OB=OA,BE=EP,推出OE=AP,可知当AP最大时,OE的值最大.
试题解析:(1)在中,令y=0,则x=±1,令x=0,则y=﹣4,∴B(1,0),C(0,﹣4);
故答案为1,0;0,﹣4;
(2)存在点P,使得△PBC为直角三角形,分两种情况:
①当PB与⊙相切时,△PBC为直角三角形,如图(2)a,连接BC,∵OB=1.OC=4,∴BC=5,∵CP2⊥BP2,CP2=,∴BP2=,过P2作P2E⊥x轴于E,P2F⊥y轴于F,则△CP2F∽△BP2E,四边形OCP2B是矩形,∴=2,设OC=P2E=2x,CP2=OE=x,∴BE=1﹣x,CF=2x﹣4,∴ =2,∴x=,2x=,∴FP2=,EP2=,∴P2(,﹣),过P1作P1G⊥x轴于G,P1H⊥y轴于H,同理求得P1(﹣1,﹣2);
②当BC⊥PC时,△PBC为直角三角形,过P4作P4H⊥y轴于H,则△BOC∽△CHP4,∴ =,∴CH=,P4H=,∴P4(,﹣﹣4);
同理P1(﹣,﹣4);
综上所述:点P的坐标为:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);
(1)如图(1),连接AP,∵OB=OA,BE=EP,∴OE=AP,∴当AP最大时,OE的值最大,∵当P在AC的延长线上时,AP的值最大,最大值=,∴OE的最大值为.故答案为.
19、(1)出现“和为8”的概率是0.33;(2)x的值不能为7.
【解析】
(1)利用频率估计概率结合表格中数据得出答案即可;
(2)假设x=7,根据题意先列出树状图,得出和为9的概率,再与进行比较,即可得出答案.
【详解】
解:(1)随着试验次数不断增加,出现“和为8”的频率逐渐稳定在0.33,
故出现“和为8”的概率是0.33.
(2)x的值不能为7.理由:假设x=7,
则P(和为9)=≠,所以x的值不能为7.
【点睛】
此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.
20、(1);(2)
【解析】
【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率.
【详解】解:(1)因为1、-1、2三个数中由两个正数,
所以从中任意取一个球,标号为正数的概率是.
(2)因为直线y=kx+b经过一、二、三象限,
所以k>0,b>0,
又因为取情况:
k b
1
-1
2
1
1,1
1,-1
1,2
-1
-1,1
-1,-1
-1.2
2
2,1
2,-1
2,2
共9种情况,符合条件的有4种,
所以直线y=kx+b经过一、二、三象限的概率是.
【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出 .
21、(1)m=﹣,n=25;(2)18,W最大=968;(3)12天.
【解析】
【分析】(1)根据题意将第12天的售价、第26天的售价代入即可得;
(2)在(1)的基础上分段表示利润,讨论最值;
(3)分别在(2)中的两个函数取值范围内讨论利润不低于870的天数,注意天数为正整数.
【详解】(1)当第12天的售价为32元/件,代入y=mx﹣76m得
32=12m﹣76m,
解得m=,
当第26天的售价为25元/千克时,代入y=n,
则n=25,
故答案为m=,n=25;
(2)由(1)第x天的销售量为20+4(x﹣1)=4x+16,
当1≤x<20时,
W=(4x+16)(x+38﹣18)=﹣2x2+72x+320=﹣2(x﹣18)2+968,
∴当x=18时,W最大=968,
当20≤x≤30时,W=(4x+16)(25﹣18)=28x+112,
∵28>0,
∴W随x的增大而增大,
∴当x=30时,W最大=952,
∵968>952,
∴当x=18时,W最大=968;
(3)当1≤x<20时,令﹣2x2+72x+320=870,
解得x1=25,x2=11,
∵抛物线W=﹣2x2+72x+320的开口向下,
∴11≤x≤25时,W≥870,
∴11≤x<20,
∵x为正整数,
∴有9天利润不低于870元,
当20≤x≤30时,令28x+112≥870,
解得x≥27,
∴27≤x≤30
∵x为正整数,
∴有3天利润不低于870元,
∴综上所述,当天利润不低于870元的天数共有12天.
【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.
22、OD=6.
【解析】
(1)根据有两个角相等的三角形相似,直接列出比例式,求出OD的长,即可解决问题.
【详解】
在△AOB与△COD中,
,
∴△AOB~△COD,
∴,
∴,
∴OD=6.
【点睛】
该题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是准确找出图形中的对应元素,正确列出比例式;对分析问题解决问题的能力提出了一定的要求.
23、(1)60人;(2)144°,补全图形见解析;(3)15万人.
【解析】
(1)用B景点人数除以其所占百分比可得;
(2)用360°乘以A景点人数所占比例即可,根据各景点人数之和等于总人数求得C的人数即可补全条形图;
(3)用总人数乘以样本中D景点人数所占比例
【详解】
(1)今年“五•一”放假期间该市这四个景点共接待游客的总人数为18÷30%=60万人;
(2)扇形统计图中景点A所对应的圆心角的度数是360°×=144°,C景点人数为60﹣(24+18+10)=8万人,
补全图形如下:
(3)估计选择去景点D旅游的人数为90×=15(万人).
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
24、(1);(2);(3).
【解析】
试题分析:(1)先利用勾股定理计算出AC=4,然后根据余切的定义求解;
(2)根据余切的定义得到ctan60°=,然后把tan60°=代入计算即可;
(3)作AH⊥BC于H,如图2,先在Rt△ACH中利用余切的定义得到ctanC==2,则可设AH=x,CH=2x,BH=BC﹣CH=20﹣2x,接着再在Rt△ABH中利用勾股定理得到(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),所以BH=8,然后根据余弦的定义求解.
解:(1)∵BC=3,AB=5,
∴AC==4,
∴ctanB==;
(2)ctan60°===;
(3)作AH⊥BC于H,如图2,
在Rt△ACH中,ctanC==2,
设AH=x,则CH=2x,
∴BH=BC﹣CH=20﹣2x,
在Rt△ABH中,∵BH2+AH2=AB2,
∴(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),
∴BH=20﹣2×6=8,
∴cosB===.
考点:解直角三角形.
相关试卷
这是一份江苏省宿迁市名校2021-2022学年中考数学模拟精编试卷含解析,共17页。试卷主要包含了下列计算正确的是,﹣2018的相反数是等内容,欢迎下载使用。
这是一份2022年江苏省泰州市高港区达标名校中考数学模拟精编试卷含解析,共24页。
这是一份2022年江苏省泰州市部分地区中考数学模拟预测题含解析,共23页。试卷主要包含了如果等内容,欢迎下载使用。