2021-2022学年江西省吉安市泰和县中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,点A、B在数轴上表示的数的绝对值相等,且,那么点A表示的数是
A. B. C. D.3
2.如图,在△ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为( )
A.2 B.3 C.4 D.6
3.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为( )
A.16 B.14 C.12 D.6
4.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是( )
A.70° B.44° C.34° D.24°
5.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是( )
A.y=(x﹣2)2+1 B.y=(x+2)2+1
C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3
6.某校九年级(1)班全体学生实验考试的成绩统计如下表:
成绩(分)
24
25
26
27
28
29
30
人数(人)
2
5
6
6
8
7
6
根据上表中的信息判断,下列结论中错误的是( )
A.该班一共有40名同学
B.该班考试成绩的众数是28分
C.该班考试成绩的中位数是28分
D.该班考试成绩的平均数是28分
7.实数a、b在数轴上的对应点的位置如图所示,则正确的结论是( )
A.a<﹣1 B.ab>0 C.a﹣b<0 D.a+b<0
8.若关于x的不等式组恰有3个整数解,则字母a的取值范围是( )
A.a≤﹣1 B.﹣2≤a<﹣1 C.a<﹣1 D.﹣2<a≤﹣1
9.如图,在矩形ABCD中,连接BD,点O是BD的中点,若点M 在AD边上,连接MO并延长交BC边于点M’,连接MB,DM’则图中的全等三角形共有( )
A.3对 B.4对 C.5对 D.6对
10.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠CDE的大小是( )
A.40° B.43° C.46° D.54°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.二次根式中,x的取值范围是 .
12.如图,在Rt△AOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后,得到△A′O′B,且反比例函数y=的图象恰好经过斜边A′B的中点C,若SABO=4,tan∠BAO=2,则k=_____.
13.当x=_____时,分式 值为零.
14.为了节约用水,某市改进居民用水设施,在2017年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为________.
15.在平面直角坐标系中,点A,B的坐标分别为(m,7),(3m﹣1,7),若线段AB与直线y=﹣2x﹣1相交,则m的取值范围为__.
16.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD,若AC=10cm,∠BAC=36°,则图中阴影部分的面积为_____.
三、解答题(共8题,共72分)
17.(8分)车辆经过润扬大桥收费站时,4个收费通道 A.B、C、D中,可随机选择其中的一个通过.一辆车经过此收费站时,选择 A通道通过的概率是 ;求两辆车经过此收费站时,选择不同通道通过的概率.
18.(8分)计算:2tan45°-(-)º-
19.(8分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6 米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°,已如A点离地面的高度AB=4米,∠BCA=30°,且B、C、D 三点在同一直线上.
(1)求树DE的高度;
(2)求食堂MN的高度.
20.(8分)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.
判断AF与⊙O的位置关系并说明理由;若⊙O的半径为4,AF=3,求AC的长.
21.(8分)老师布置了一个作业,如下:已知:如图1的对角线的垂直平分线交于点,交于点,交于点.求证:四边形是菱形.
某同学写出了如图2所示的证明过程,老师说该同学的作业是错误的.请你解答下列问题:能找出该同学错误的原因吗?请你指出来;请你给出本题的正确证明过程.
22.(10分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y=的表达式;
(2)已知点C(0,8),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.
23.(12分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:
车型
目的地
A村(元/辆)
B村(元/辆)
大货车
800
900
小货车
400
600
(1)求这15辆车中大小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.
(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
24.如图,△ABC中,∠C=90°,AC=BC,∠ABC的平分线BD交AC于点D,DE⊥AB于点E.
(1)依题意补全图形;
(2)猜想AE与CD的数量关系,并证明.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点.
【详解】
解:如图,AB的中点即数轴的原点O.
根据数轴可以得到点A表示的数是.
故选:B.
【点睛】
此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点确定数轴的原点是解决本题的关键.
2、B
【解析】
根据三角形的中位线等于第三边的一半进行计算即可.
【详解】
∵D、E分别是△ABC边AB、AC的中点,
∴DE是△ABC的中位线,
∵BC=6,
∴DE=BC=1.
故选B.
【点睛】
本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.
3、C
【解析】
先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为△ABC中位线,故△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.
【详解】
∵AB=AC=15,AD平分∠BAC,
∴D为BC中点,
∵点E为AC的中点,
∴DE为△ABC中位线,
∴DE=AB,
∴△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.
∴AB+AC+BC=42,
∴BC=42-15-15=12,
故选C.
【点睛】
此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.
4、C
【解析】
易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC
【详解】
∵AB=BD,∠B=40°,
∴∠ADB=70°,
∵∠C=36°,
∴∠DAC=∠ADB﹣∠C=34°.
故选C.
【点睛】
本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.
5、C
【解析】
试题分析:根据顶点式,即A、C两个选项的对称轴都为,再将(0,1)代入,符合的式子为C选项
考点:二次函数的顶点式、对称轴
点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析式为,顶点坐标为,对称轴为
6、D
【解析】
直接利用众数、中位数、平均数的求法分别分析得出答案.
【详解】
解:A、该班一共有2+5+6+6+8+7+6=40名同学,故此选项正确,不合题意;
B、该班考试成绩的众数是28分,此选项正确,不合题意;
C、该班考试成绩的中位数是:第20和21个数据的平均数,为28分,此选项正确,不合题
意;
D、该班考试成绩的平均数是:(24×2+25×5+26×6+27×6+28×8+29×7+30×6)÷40=27.45(分),
故选项D错误,符合题意.
故选D.
【点睛】
此题主要考查了众数、中位数、平均数的求法,正确把握相关定义是解题关键.
7、C
【解析】
直接利用a,b在数轴上的位置,进而分别对各个选项进行分析得出答案.
【详解】
选项A,从数轴上看出,a在﹣1与0之间,
∴﹣1<a<0,
故选项A不合题意;
选项B,从数轴上看出,a在原点左侧,b在原点右侧,
∴a<0,b>0,
∴ab<0,
故选项B不合题意;
选项C,从数轴上看出,a在b的左侧,
∴a<b,
即a﹣b<0,
故选项C符合题意;
选项D,从数轴上看出,a在﹣1与0之间,
∴1<b<2,
∴|a|<|b|,
∵a<0,b>0,
所以a+b=|b|﹣|a|>0,
故选项D不合题意.
故选:C.
【点睛】
本题考查数轴和有理数的四则运算,解题的关键是掌握利用数轴表示有理数的大小.
8、B
【解析】
根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出字母a的取值范围.
【详解】
解:∵x的不等式组恰有3个整数解,
∴整数解为1,0,-1,
∴-2≤a<-1.
故选B.
【点睛】
本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.
9、D
【解析】
根据矩形的对边平行且相等及其对称性,即可写出图中的全等三角形的对数.
【详解】
图中图中的全等三角形有△ABM≌△CDM’,△ABD≌△CDB, △OBM≌△ODM’,
△OBM’≌△ODM, △M’BM≌△MDM’, △DBM≌△BDM’,故选D.
【点睛】
此题主要考查矩形的性质及全等三角形的判定,解题的关键是熟知矩形的对称性.
10、C
【解析】
根据DE∥AB可求得∠CDE=∠B解答即可.
【详解】
解:∵DE∥AB,
∴∠CDE=∠B=46°,
故选:C.
【点睛】
本题主要考查平行线的性质:两直线平行,同位角相等.快速解题的关键是牢记平行线的性质.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、.
【解析】
根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
12、1
【解析】
设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,
∵tan∠BAO=2,
∴=2,
∵S△ABO=•AO•BO=4,
∴AO=2,BO=4,
∵△ABO≌△A'O'B,
∴AO=A′O′=2,BO=BO′=4,
∵点C为斜边A′B的中点,CD⊥BO′,
∴CD=A′O′=1,BD=BO′=2,
∴x=BO﹣CD=4﹣1=3,y=BD=2,
∴k=x·y=3×2=1.
故答案为1.
13、﹣1.
【解析】
试题解析:分式的值为0,
则:
解得:
故答案为
14、
【解析】
试题解析:305000用科学记数法表示为:
故答案为
15、﹣4≤m≤﹣1
【解析】
先求出直线y=7与直线y=﹣2x﹣1的交点为(﹣4,7),再分类讨论:当点B在点A的右侧,则m≤﹣4≤3m﹣1,当点B在点A的左侧,则3m﹣1≤﹣4≤m,然后分别解关于m的不等式组即可.
【详解】
解:当y=7时,﹣2x﹣1=7,解得x=﹣4,
所以直线y=7与直线y=﹣2x﹣1的交点为(﹣4,7),
当点B在点A的右侧,则m≤﹣4≤3m﹣1,无解;
当点B在点A的左侧,则3m﹣1≤﹣4≤m,解得﹣4≤m≤﹣1,
所以m的取值范围为﹣4≤m≤﹣1,
故答案为﹣4≤m≤﹣1.
【点睛】
本题考查了一次函数图象上点的坐标特征,根据直线y=﹣2x﹣1与线段AB有公共点找出关于m的一元一次不等式组是解题的关键.
16、10πcm1.
【解析】
根据已知条件得到四边形ABCD是矩形,求得图中阴影部分的面积=S扇形AOD+S扇形BOC=1S扇形AOD,根据等腰三角形的性质得到∠BAC=∠ABO=36°,由圆周角定理得到∠AOD=71°,于是得到结论.
【详解】
解:∵AC与BD是⊙O的两条直径,
∴∠ABC=∠ADC=∠DAB=∠BCD=90°,
∴四边形ABCD是矩形,
∴S△ABO=S△CDO =S△AOD=S△BOD,
∴图中阴影部分的面积=S扇形AOD+S扇形BOC=1S扇形AOD,
∵OA=OB,
∴∠BAC=∠ABO=36°,
∴∠AOD=71°,
∴图中阴影部分的面积=1×=10π,
故答案为10πcm1.
点睛:本题考查了扇形的面积,矩形的判定和性质,圆周角定理的推论,三角形外角的性质,熟练掌握扇形的面积公式是解题的关键.
三、解答题(共8题,共72分)
17、(1);(2).
【解析】
试题分析:(1)根据概率公式即可得到结论;
(2)画出树状图即可得到结论.
试题解析:(1)选择 A通道通过的概率=,
故答案为;
(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.
18、2-
【解析】
先求三角函数,再根据实数混合运算法计算.
【详解】
解:原式=2×1-1-=1+1-=2-
【点睛】
此题重点考察学生对三角函数值的应用,掌握特殊角的三角函数值是解题的关键.
19、(1)12米;(2)(2+8)米
【解析】
(1)设DE=x,先证明△ACE是直角三角形,∠CAE=60°,∠AEC=30°,得到AE=16,根据EF=8求出x的值得到答案;
(2)延长NM交DB延长线于点P,先分别求出PB、CD得到PD,利用∠NDP=45°得到NP,即可求出MN.
【详解】
(1)如图,设DE=x,
∵AB=DF=4,∠ACB=30°,
∴AC=8,
∵∠ECD=60°,
∴△ACE是直角三角形,
∵AF∥BD,
∴∠CAF=30°,
∴∠CAE=60°,∠AEC=30°,
∴AE=16,
∴Rt△AEF中,EF=8,
即x﹣4=8,
解得x=12,
∴树DE的高度为12米;
(2)延长NM交DB延长线于点P,则AM=BP=6,
由(1)知CD=CE=×AC=4,BC=4,
∴PD=BP+BC+CD=6+4+4=6+8,
∵∠NDP=45°,且∠NPD=90°,
∴NP=PD=6+8,
∴NM=NP﹣MP=6+8﹣4=2+8,
∴食堂MN的高度为(2+8)米.
【点睛】
此题是解直角三角形的实际应用,考查直角三角形的性质,30°角所对的直角边等于斜边的一半,锐角三角函数,将已知的线段及角放在相应的直角三角形中利用三角函数解题,由此做相应的辅助线是解题的关键.
20、解:(1)AF与圆O的相切.理由为:
如图,连接OC,
∵PC为圆O切线,∴CP⊥OC.
∴∠OCP=90°.
∵OF∥BC,
∴∠AOF=∠B,∠COF=∠OCB.
∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.
∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,
∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.
∴AF为圆O的切线,即AF与⊙O的位置关系是相切.
(2)∵△AOF≌△COF,∴∠AOF=∠COF.
∵OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC.
∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根据勾股定理得:OF=1.
∵S△AOF=•OA•AF=•OF•AE,∴AE=.
∴AC=2AE=.
【解析】
试题分析:(1)连接OC,先证出∠3=∠2,由SAS证明△OAF≌△OCF,得对应角相等∠OAF=∠OCF,再根据切线的性质得出∠OCF=90°,证出∠OAF=90°,即可得出结论;
(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE.
试题解析:(1)连接OC,如图所示:
∵AB是⊙O直径,
∴∠BCA=90°,
∵OF∥BC,
∴∠AEO=90°,∠1=∠2,∠B=∠3,
∴OF⊥AC,
∵OC=OA,
∴∠B=∠1,
∴∠3=∠2,
在△OAF和△OCF中,
,
∴△OAF≌△OCF(SAS),
∴∠OAF=∠OCF,
∵PC是⊙O的切线,
∴∠OCF=90°,
∴∠OAF=90°,
∴FA⊥OA,
∴AF是⊙O的切线;
(2)∵⊙O的半径为4,AF=3,∠OAF=90°,
∴OF==1
∵FA⊥OA,OF⊥AC,
∴AC=2AE,△OAF的面积=AF•OA=OF•AE,
∴3×4=1×AE,
解得:AE=,
∴AC=2AE=.
考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质.
21、(1)能,见解析;(2)见解析.
【解析】
(1)直接利用菱形的判定方法分析得出答案;
(2)直接利用全等三角形的判定与性质得出EO=FO,进而得出答案.
【详解】
解:(1)能;该同学错在AC和EF并不是互相平分的,EF垂直平分AC,但未证明AC垂直平分EF,
需要通过证明得出;
(2)证明: ∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠FAC=∠ECA.
∵EF是AC的垂直平分线,
∴OA=OC.
∵在△AOF与△COE中,
,
∴△AOF≌△COE(ASA).
∴EO=FO.
∴AC垂直平分EF.
∴EF与AC互相垂直平分.
∴四边形AECF是菱形.
【点睛】
本题主要考查了平行四边形的性质,菱形的判定,全等三角形的判定与性质,正确得出全等三角形是解题关键.
22、(1) ,y=2x﹣1;(2).
【解析】
(1)利用待定系数法即可解答;
(2)作MD⊥y轴,交y轴于点D,设点M的坐标为(x,2x-1),根据MB=MC,得到CD=BD,再列方程可求得x的值,得到点M的坐标
【详解】
解:(1)把点A(4,3)代入函数得:a=3×4=12,
∴.
∵A(4,3)
∴OA=1,
∵OA=OB,
∴OB=1,
∴点B的坐标为(0,﹣1)
把B(0,﹣1),A(4,3)代入y=kx+b得:
∴y=2x﹣1.
(2)作MD⊥y轴于点D.
∵点M在一次函数y=2x﹣1上,
∴设点M的坐标为(x,2x﹣1)则点D(0,2x-1)
∵MB=MC,
∴CD=BD
∴8-(2x-1)=2x-1+1
解得:x=
∴2x﹣1= ,
∴点M的坐标为 .
【点睛】
本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式.
23、(1)大货车用8辆,小货车用7辆;(2)y=100x+1.(3)见解析.
【解析】
(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;
(2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为[7-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;
(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.
【详解】
(1)设大货车用x辆,小货车用y辆,根据题意得:
解得:.∴大货车用8辆,小货车用7辆.
(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+1.(3≤x≤8,且x为整数).
(3)由题意得:12x+8(10-x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,
∵y=100x+1,k=100>0,y随x的增大而增大,∴当x=5时,y最小,
最小值为y=100×5+1=9900(元).
答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.
24、 (1)见解析;(2)见解析.
【解析】
(1)根据题意画出图形即可;
(2)利用等腰三角形的性质得∠A=45∘.则∠ADE=∠A=45°,所以AE=DE,再根据角平分线性质得CD=DE,从而得到AE=CD.
【详解】
解:(1)如图:
(2)AE与 CD的数量关系为AE=CD.
证明:∵∠C=90°,AC=BC,
∴∠A=45°.
∵DE⊥AB,
∴∠ADE=∠A=45°.
∴AE=DE,
∵BD平分∠ABC,
∴CD=DE,
∴AE=CD.
【点睛】
此题考查等腰三角形的性质,角平分线的性质,解题关键在于根据题意作辅助线.
2021-2022学年江西省吉安市泰和县八年级(上)期末数学试卷(含解析): 这是一份2021-2022学年江西省吉安市泰和县八年级(上)期末数学试卷(含解析),共18页。
枣庄市2021-2022学年中考数学模拟精编试卷含解析: 这是一份枣庄市2021-2022学年中考数学模拟精编试卷含解析,共17页。试卷主要包含了7的相反数是等内容,欢迎下载使用。
江西省鹰潭市名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份江西省鹰潭市名校2021-2022学年中考数学模拟精编试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,的倒数的绝对值是,计算36÷等内容,欢迎下载使用。