搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年江西省高安市中考四模数学试题含解析

    2021-2022学年江西省高安市中考四模数学试题含解析第1页
    2021-2022学年江西省高安市中考四模数学试题含解析第2页
    2021-2022学年江西省高安市中考四模数学试题含解析第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江西省高安市中考四模数学试题含解析

    展开

    这是一份2021-2022学年江西省高安市中考四模数学试题含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,不等式组的解集是,不等式组的解集为,一、单选题等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,PA、PB切⊙O于A、B两点,AC是⊙O的直径,∠P=40°,则∠ACB度数是(  )

    A.50° B.60° C.70° D.80°
    2.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为(  )

    A.36 B.12 C.6 D.3
    3.在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是(  )
    A.﹣3 B.0 C. D.﹣1
    4.不等式组的解集是(  )
    A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤4
    5.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为(  )

    A. B. C.2 D.2
    6.如图,平行四边形ABCD的顶点A、B、D在⊙O上,顶点C在⊙O直径BE上,连结AE,若∠E=36°,则∠ADC的度数是( )

    A.44° B.53° C.72° D.54°
    7.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是(  )

    A.4个 B.3个 C.2个 D.1个
    8.不等式组的解集为.则的取值范围为( )
    A. B. C. D.
    9.下列图形中,既是中心对称图形又是轴对称图形的是(  )
    A. B.
    C. D.
    10.一、单选题
    如图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的(  )

    A.点A B.点B C.点C D.点D
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点.
    (1)OM的长等于_______;
    (2)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.

    12.已知抛物线y=-x2+mx+2-m,在自变量x的值满足-1≤x≤2的情况下.若对应的函数值y的最大值为6,则m的值为__________.
    13.如图,在边长为1正方形ABCD中,点P是边AD上的动点,将△PAB沿直线BP翻折,点A的对应点为点Q,连接BQ、DQ.则当BQ+DQ的值最小时,tan∠ABP=_____.

    14.因式分解:3a3﹣6a2b+3ab2=_____.
    15.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.
    16.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=的图象上,则菱形的面积为_____.

    三、解答题(共8题,共72分)
    17.(8分)如图所示,平面直角坐标系中,O为坐标原点,二次函数的图象与x轴交于、B两点,与y轴交于点C;
    (1)求c与b的函数关系式;
    (2)点D为抛物线顶点,作抛物线对称轴DE交x轴于点E,连接BC交DE于F,若AE=DF,求此二次函数解析式;
    (3)在(2)的条件下,点P为第四象限抛物线上一点,过P作DE的垂线交抛物线于点M,交DE于H,点Q为第三象限抛物线上一点,作于N,连接MN,且,当时,连接PC,求的值.

    18.(8分)如图1,三个正方形ABCD、AEMN、CEFG,其中顶点D、C、G在同一条直线上,点E是BC边上的动点,连结AC、AM.
    (1)求证:△ACM∽△ABE.
    (2)如图2,连结BD、DM、MF、BF,求证:四边形BFMD是平行四边形.
    (3)若正方形ABCD的面积为36,正方形CEFG的面积为4,求五边形ABFMN的面积.

    19.(8分)已知,关于 x的一元二次方程(k﹣1)x2+x+3=0 有实数根,求k的取值范围.
    20.(8分)在平面直角坐标系中,O为原点,点A(3,0),点B(0,4),把△ABO绕点A顺时针旋转,得△AB′O′,点B,O旋转后的对应点为B′,O.
    (1)如图1,当旋转角为90°时,求BB′的长;
    (2)如图2,当旋转角为120°时,求点O′的坐标;
    (3)在(2)的条件下,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标.(直接写出结果即可)

    21.(8分)定义:对于给定的二次函数y=a(x﹣h)2+k(a≠0),其伴生一次函数为y=a(x﹣h)+k,例如:二次函数y=2(x+1)2﹣3的伴生一次函数为y=2(x+1)﹣3,即y=2x﹣1.
    (1)已知二次函数y=(x﹣1)2﹣4,则其伴生一次函数的表达式为_____;
    (2)试说明二次函数y=(x﹣1)2﹣4的顶点在其伴生一次函数的图象上;
    (3)如图,二次函数y=m(x﹣1)2﹣4m(m≠0)的伴生一次函数的图象与x轴、y轴分别交于点B、A,且两函数图象的交点的横坐标分别为1和2,在∠AOB内部的二次函数y=m(x﹣1)2﹣4m的图象上有一动点P,过点P作x轴的平行线与其伴生一次函数的图象交于点Q,设点P的横坐标为n,直接写出线段PQ的长为时n的值.

    22.(10分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.
    请根据图中信息解答下列问题:求这天的温度y与时间x(0≤x≤24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?

    23.(12分)如图,在平面直角坐标系中,点 A 和点 C 分别在x 轴和 y 轴的正半轴上,OA=6,OC=4,以 OA,OC 为邻边作矩形 OABC, 动点 M,N 以每秒 1 个单位长度的速度分别从点 A、C 同时出发,其中点 M 沿 AO 向终点 O 运动,点 N沿 CB 向终点 B 运动,当两个动点运动了 t 秒时,过点 N 作NP⊥BC,交 OB 于点 P,连接 MP.

    (1)直接写出点 B 的坐标为 ,直线 OB 的函数表达式为 ;
    (2)记△OMP 的面积为 S,求 S 与 t 的函数关系式;并求 t 为何值时,S有最大值,并求出最大值.
    24.在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.
    (1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;
    (2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    连接BC,根据题意PA,PB是圆的切线以及可得的度数,然后根据,可得的度数,因为是圆的直径,所以,根据三角形内角和即可求出的度数。
    【详解】
    连接BC.
    ∵PA,PB是圆的切线

    在四边形中,




    所以
    ∵是直径


    故答案选C.

    【点睛】
    本题主要考察切线的性质,四边形和三角形的内角和以及圆周角定理。
    2、D
    【解析】
    设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论. 
    解:设△OAC和△BAD的直角边长分别为a、b, 
    则点B的坐标为(a+b,a﹣b).
    ∵点B在反比例函数的第一象限图象上, 
    ∴(a+b)×(a﹣b)=a2﹣b2=1. 
    ∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×1=2. 
    故选D.
    点睛:本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键.
    3、B
    【解析】
    |﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,
    ∵3>2>>1>0,
    ∴绝对值最小的数是0,
    故选:B.
    4、D
    【解析】
    试题分析:解不等式①可得:x>-1,解不等式②可得:x≤4,则不等式组的解为-1<x≤4,故选D.
    5、D
    【解析】
    【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.
    【详解】过A作AD⊥BC于D,

    ∵△ABC是等边三角形,
    ∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,
    ∵AD⊥BC,
    ∴BD=CD=1,AD=BD=,
    ∴△ABC的面积为BC•AD==,
    S扇形BAC==,
    ∴莱洛三角形的面积S=3×﹣2×=2π﹣2,
    故选D.
    【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.
    6、D
    【解析】
    根据直径所对的圆周角为直角可得∠BAE=90°,再根据直角三角形的性质和平行四边形的性质可得解.
    【详解】
    根据直径所对的圆周角为直角可得∠BAE=90°,
    根据∠E=36°可得∠B=54°,
    根据平行四边形的性质可得∠ADC=∠B=54°.
    故选D
    【点睛】
    本题考查了平行四边形的性质、圆的基本性质.
    7、B
    【解析】
    通过图象得到、、符号和抛物线对称轴,将方程转化为函数图象交点问题,利用抛物线顶点证明.
    【详解】
    由图象可知,抛物线开口向下,则,,
    抛物线的顶点坐标是,
    抛物线对称轴为直线,

    ,则①错误,②正确;
    方程的解,可以看做直线与抛物线的交点的横坐标,
    由图象可知,直线经过抛物线顶点,则直线与抛物线有且只有一个交点,
    则方程有两个相等的实数根,③正确;
    由抛物线对称性,抛物线与轴的另一个交点是,则④错误;
    不等式可以化为,
    抛物线顶点为,
    当时,,
    故⑤正确.
    故选:.
    【点睛】
    本题是二次函数综合题,考查了二次函数的各项系数与图象位置的关系、抛物线对称性和最值,以及用函数的观点解决方程或不等式.
    8、B
    【解析】
    求出不等式组的解集,根据已知得出关于k的不等式,求出不等式的解集即可.
    【详解】
    解:解不等式组,得.
    ∵不等式组的解集为x<2,
    ∴k+1≥2,
    解得k≥1.
    故选:B.
    【点睛】
    本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k的不等式,难度适中.
    9、D
    【解析】
    根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
    【详解】
    解:A. ∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;
    B. ∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;
    C. ∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;
    D. ∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.
    故选:D.
    【点睛】
    本题考查了中心对称图形与轴对称图形的定义,解题的关键是熟练的掌握中心对称图形与轴对称图形的定义.
    10、D
    【解析】
    根据全等三角形的性质和已知图形得出即可.
    【详解】
    解:∵△MNP≌△MEQ,
    ∴点Q应是图中的D点,如图,

    故选:D.
    【点睛】
    本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、(1)4;(2)见解析;
    【解析】
    解:(1)由勾股定理可得OM的长度
    (2)取格点 F , E, 连接 EF , 得到点 N ,取格点S, T, 连接ST, 得到点R, 连接NR交OM于P,则点P即为所求。
    【详解】
    (1)OM==4;
    故答案为4.
    (2)以点O为原点建立直角坐标系,则A(1,0),B(4,0),设P(a,a),(0≤a≤4),
    ∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,
    ∴PA2+PB2=4(a﹣)2+,
    ∵0≤a≤4,
    ∴当a=时,PA2+PB2 取得最小值,
    综上,需作出点P满足线段OP的长=;
    取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR交OM于P,
    则点P即为所求.
    【点睛】(1) 根据勾股定理即可得到结论;
    (2) 取格点F, E, 连接EF, 得到点N, 取格点S, T,连接ST, 得到点R, 连接NR即可得到结果.
    12、m=8或
    【解析】
    求出抛物线的对称轴分三种情况进行讨论即可.
    【详解】
    抛物线的对称轴,抛物线开口向下,
    当,即时,抛物线在-1≤x≤2时,随的增大而减小,在时取得最大值,即 解得符合题意.
    当即时,抛物线在-1≤x≤2时,在时取得最大值,即 无解.
    当,即时,抛物线在-1≤x≤2时,随的增大而增大,在时取得最大值,即 解得符合题意.
    综上所述,m的值为8或
    故答案为:8或
    【点睛】
    考查二次函数的图象与性质,注意分类讨论,不要漏解.
    13、﹣1
    【解析】
    连接DB,若Q点落在BD上,此时和最短,且为,设AP=x,则PD=1﹣x,PQ=x.解直角三角形得到AP=﹣1,根据三角函数的定义即可得到结论.
    【详解】
    如图:

    连接DB,若Q点落在BD上,此时和最短,且为,
    设AP=x,则PD=1﹣x,PQ=x.
    ∵∠PDQ=45°,
    ∴PD=PQ,即1﹣x=,
    ∴x=﹣1,
    ∴AP=﹣1,
    ∴tan∠ABP==﹣1,
    故答案为:﹣1.
    【点睛】
    本题考查了翻折变换(折叠问题),正方形的性质,轴对称﹣最短路线问题,正确的理解题意是解题的关键.
    14、3a(a﹣b)1
    【解析】
    首先提取公因式3a,再利用完全平方公式分解即可.
    【详解】
    3a3﹣6a1b+3ab1,
    =3a(a1﹣1ab+b1),
    =3a(a﹣b)1.
    故答案为:3a(a﹣b)1.
    【点睛】
    此题考查多项式的因式分解,多项式分解因式时如果有公因式必须先提取公因式,然后再利用公式法分解因式,根据多项式的特点用适合的分解因式的方法是解题的关键.
    15、7
    【解析】
    设树的高度为m,由相似可得,解得,所以树的高度为7m
    16、1
    【解析】
    连接AC交OB于D,由菱形的性质可知.根据反比例函数中k的几何意义,得出△AOD的面积=1,从而求出菱形OABC的面积=△AOD的面积的4倍.
    【详解】

    连接AC交OB于D.
    四边形OABC是菱形,

    点A在反比例函数的图象上,
    的面积,
    菱形OABC的面积=的面积=1.
    【点睛】
    本题考查的知识点是菱形的性质及反比例函数的比例系数k的几何意义.解题关键是反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即.

    三、解答题(共8题,共72分)
    17、(1);(2);(3)
    【解析】
    (1)把A(-1,0)代入y=x2-bx+c,即可得到结论;
    (2)由(1)得,y=x2-bx-1-b,求得EO=,AE=+1=BE,于是得到OB=EO+BE=++1=b+1,当x=0时,得到y=-b-1,根据等腰直角三角形的性质得到D(,-b-2),将D(,-b-2)代入y=x2-bx-1-b解方程即可得到结论;
    (3)连接QM,DM,根据平行线的判定得到QN∥MH,根据平行线的性质得到∠NMH=∠QNM,根据已知条件得到∠QMN=∠MQN,设QN=MN=t,求得Q(1-t,t2-4),得到DN=t2-4-(-4)=t2,同理,设MH=s,求得NH=t2-s2,根据勾股定理得到NH=1,根据三角函数的定义得到∠NMH=∠MDH推出∠NMD=90°;根据三角函数的定义列方程得到t1=,t2=-(舍去),求得MN=,根据三角函数的定义即可得到结论.
    【详解】
    (1)把A(﹣1,0)代入,
    ∴,
    ∴;
    (2)由(1)得,,
    ∵点D为抛物线顶点,
    ∴,
    ∴,
    当时,,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    将代入得,,
    解得:,(舍去),
    ∴二次函数解析式为:;
    (3)连接QM,DM,

    ∵,,
    ∴,∴,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,设,则,
    ∴,同理,
    设,则,∴,
    在中,,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴;
    ∵,
    ∴,,
    ∵,
    ∴,即,
    解得:,(舍去),
    ∴,
    ∵,
    ∴,
    ∴,
    当时,,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,,,
    过P作于T,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题考查了待定系数法求二次函数的解析式,平行线的性质,三角函数的定义,勾股定理,正确的作出辅助线构造直角三角形是解题的关键.
    18、(1)证明见解析;(2)证明见解析;(3)74.
    【解析】
    (1)根据四边形ABCD和四边形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可证△ACM∽△ABE;
    (2)连结AC,由△ACM∽△ABE得∠ACM=∠B=90°,易证∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,FC=CE,得MF=BD,从而可以证明四边形BFMD是平行四边形;
    (3)根据S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.
    【详解】
    (1)证明:∵四边形ABCD和四边形AEMN都是正方形,
    ∴,∠CAB=∠MAC=45°,
    ∴∠CAB-∠CAE=∠MAC-∠CAE,
    ∴∠BAE=∠CAM,
    ∴△ACM∽△ABE.

    (2)证明:连结AC
    因为△ACM∽△ABE,则∠ACM=∠B=90°,
    因为∠ACB=∠ECF=45°,
    所以∠ACM+∠ACB+∠ECF=180°,
    所以点M,C,F在同一直线上,所以∠MCD=∠BDC=45°,
    所以BD平行MF,
    又因为MC=BE,FC=CE,
    所以MF=BC=BD,
    所以四边形BFMD是平行四边形

    (3)S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM
    =62+42+(2+6)4+ 26
    =74.
    【点睛】
    本题主要考查了正方形的性质的应用,解此题的关键是能正确作出辅助线,综合性比较强,有一定的难度.
    19、0≤k≤且 k≠1.
    【解析】
    根据二次项系数非零、被开方数非负及根的判别式△≥0,即可得出关于 k 的一元一次不等式组,解之即可求出 k 的取值范围.
    【详解】
    解:∵关于 x 的一元二次方程(k﹣1)x2+x+3=0 有实数根,
    ∴2k≥0,k-1≠0,Δ=()2-43(k-1)≥0,
    解得:0≤k≤且 k≠1.
    ∴k 的取值范围为 0≤k≤且 k≠1.
    【点睛】
    本题考查了根的判别式、二次根式以及一元二次方程的定义,根据二次项系数非零、被开方数非负及根的判别式△≥0,列出关于 k 的一元一次不等式组是解题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆

    相关试卷

    2023年江西省宜春市高安市中考数学二模试卷(含解析):

    这是一份2023年江西省宜春市高安市中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江西省高安市重点名校2022年中考四模数学试题含解析:

    这是一份江西省高安市重点名校2022年中考四模数学试题含解析,共22页。试卷主要包含了运用乘法公式计算等内容,欢迎下载使用。

    江西省高安市第四中学2021-2022学年中考数学全真模拟试题含解析:

    这是一份江西省高安市第四中学2021-2022学年中考数学全真模拟试题含解析,共26页。试卷主要包含了考生要认真填写考场号和座位序号,下列算式中,结果等于x6的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map