2021-2022学年江西省吉安市永新县重点名校中考联考数学试题含解析
展开
这是一份2021-2022学年江西省吉安市永新县重点名校中考联考数学试题含解析,共21页。试卷主要包含了已知一次函数y=等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列图形中,既是轴对称图形又是中心对称图形的是
A. B. C. D.
2.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:
文化程度
高中
大专
本科
硕士
博士
人数
9
17
20
9
5
关于这组文化程度的人数数据,以下说法正确的是:( )
A.众数是20 B.中位数是17 C.平均数是12 D.方差是26
3.下列各数中,最小的数是( )
A.0 B. C. D.
4.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为( )
A.(,0) B.(2,0) C.(,0) D.(3,0)
5.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是( )
A. B. C. D.
6.已知一次函数y=(k﹣2)x+k不经过第三象限,则k的取值范围是( )
A.k≠2 B.k>2 C.0<k<2 D.0≤k<2
7.一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.下列叙述错误的是( )
A.AB两地相距1000千米
B.两车出发后3小时相遇
C.动车的速度为
D.普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地
8.如图,点ABC在⊙O上,OA∥BC,∠OAC=19°,则∠AOB的大小为( )
A.19° B.29° C.38° D.52°
9.如图,AB切⊙O于点B,OA=2,AB=3,弦BC∥OA,则劣弧BC的弧长为( )
A. B. C.π D.
10.在平面直角坐标系中,点(2,3)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
二、填空题(共7小题,每小题3分,满分21分)
11.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于_____.
12.分解因式:8a3﹣8a2+2a=_____.
13.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.
14.不解方程,判断方程2x2+3x﹣2=0的根的情况是_____.
15.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是______米精确到1米
16.已知⊙O半径为1,A、B在⊙O上,且,则AB所对的圆周角为__o.
17.如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为 .
三、解答题(共7小题,满分69分)
18.(10分)已知矩形ABCD,AB=4,BC=3,以AB为直径的半圆O在矩形ABCD的外部(如图),将半圆O绕点A顺时针旋转α度(0°≤α≤180°)
(1)半圆的直径落在对角线AC上时,如图所示,半圆与AB的交点为M,求AM的长;
(2)半圆与直线CD相切时,切点为N,与线段AD的交点为P,如图所示,求劣弧AP的长;
(3)在旋转过程中,半圆弧与直线CD只有一个交点时,设此交点与点C的距离为d,直接写出d的取值范围.
19.(5分)我市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标.建筑面积7200平方米,为我国西北第一高阁.秦汉高台门阙的建筑风格,追求稳定之中的飞扬灵动,深厚之中的巧妙组合,使景观功能和标志功能融为一体.小亮想知道石鼓阁的高是多少,他和同学李梅对石鼓阁进行测量.测量方案如下:如图,李梅在小亮和“石鼓阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,李梅看着镜面上的标记,她来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得李梅眼睛与地面的高度ED=1.6米,CD=2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.4米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.7米,影长FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“石鼓阁”的高AB的长度.
20.(8分)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD、CD.
(1)求证:AD=CD;
(2)若AB=10,OE=3,求tan∠DBC的值.
21.(10分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.
调查结果统计表
组别
分组(单位:元)
人数
A
0≤x<30
4
B
30≤x<60
16
C
60≤x<90
a
D
90≤x<120
b
E
x≥120
2
请根据以上图表,解答下列问题:填空:这次被调查的同学共有 人,a+b= ,m= ;求扇形统计图中扇形C的圆心角度数;该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.
22.(10分)一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把1,3,6,10,15,21,…,称为“三角形数”;把1,4,9,16,25,…,称为“正方形数”.
将三角形、正方形、五边形都整齐的由左到右填在所示表格里:
三角形数
1
3
6
10
15
21
a
…
正方形数
1
4
9
16
25
b
49
…
五边形数
1
5
12
22
C
51
70
…
(1)按照规律,表格中a=___,b=___,c=___.
(2)观察表中规律,第n个“正方形数”是________;若第n个“三角形数”是x,则用含x、n的代数式表示第n个“五边形数”是___________.
23.(12分)在平面直角坐标系中,O为原点,点A(3,0),点B(0,4),把△ABO绕点A顺时针旋转,得△AB′O′,点B,O旋转后的对应点为B′,O.
(1)如图1,当旋转角为90°时,求BB′的长;
(2)如图2,当旋转角为120°时,求点O′的坐标;
(3)在(2)的条件下,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标.(直接写出结果即可)
24.(14分)如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为1.
(1)求反比例函数的解析式;
(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;
B. 不是轴对称图形,是中心对称图形,故不符合题意;
C. 是轴对称图形,但不是中心对称图形,故不符合题意;
D. 既是轴对称图形又是中心对称图形,故符合题意.
故选D.
【点睛】
本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.
2、C
【解析】
根据众数、中位数、平均数以及方差的概念求解.
【详解】
A、这组数据中9出现的次数最多,众数为9,故本选项错误;
B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;
C、平均数==12,故本选项正确;
D、方差= [(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]= ,故本选项错误.
故选C.
【点睛】
本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.
3、D
【解析】
根据实数大小比较法则判断即可.
【详解】
<0<1<,
故选D.
【点睛】
本题考查了实数的大小比较的应用,掌握正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小是解题的关键.
4、C
【解析】
过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.
【详解】
解:过点B作BD⊥x轴于点D,
∵∠ACO+∠BCD=90°,
∠OAC+∠ACO=90°,
∴∠OAC=∠BCD,
在△ACO与△BCD中,
∴△ACO≌△BCD(AAS)
∴OC=BD,OA=CD,
∵A(0,2),C(1,0)
∴OD=3,BD=1,
∴B(3,1),
∴设反比例函数的解析式为y=,
将B(3,1)代入y=,
∴k=3,
∴y=,
∴把y=2代入y=,
∴x=,
当顶点A恰好落在该双曲线上时,
此时点A移动了个单位长度,
∴C也移动了个单位长度,
此时点C的对应点C′的坐标为(,0)
故选:C.
【点睛】
本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.
5、A
【解析】
试题分析:观察图形可知,该几何体的主视图是.故选A.
考点:简单组合体的三视图.
6、D
【解析】
直线不经过第三象限,则经过第二、四象限或第一、二、四象限,当经过第二、四象限时,函数为正比例函数,k=0
当经过第一、二、四象限时, ,解得0
相关试卷
这是一份江西省吉安市万安县市级名校2021-2022学年中考一模数学试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,中国古代在利用“计里画方”等内容,欢迎下载使用。
这是一份2022年江西省吉安市永新县中考联考数学试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是等内容,欢迎下载使用。
这是一份2021-2022学年江西省全南县重点达标名校中考联考数学试题含解析,共18页。试卷主要包含了若a+|a|=0,则等于等内容,欢迎下载使用。