2021-2022学年江西省萍乡市安源区重点名校中考三模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为( )
A.100° B.80° C.50° D.20°
2.一元二次方程x2+x﹣2=0的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.只有一个实数根 D.没有实数根
3.从3、1、-2这三个数中任取两个不同的数作为P点的坐标,则P点刚好落在第四象限的概率是( )
A. B. C. D.
4.点P(﹣2,5)关于y轴对称的点的坐标为( )
A.(2,﹣5) B.(5,﹣2) C.(﹣2,﹣5) D.(2,5)
5.工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为( )
A.1.21×103 B.12.1×103 C.1.21×104 D.0.121×105
6.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是
已知:如图,在中,点D,E,F分别在边AB,AC,BC上,且,,
求证:∽.
证明:又,,,,∽.
A. B. C. D.
7.下列运算正确的是( )
A.a2•a3=a6 B.()﹣1=﹣2 C. =±4 D.|﹣6|=6
8.如图是一个由4个相同的正方体组成的立体图形,它的左视图为( )
A. B. C. D.
9.在平面直角坐标系中,点(2,3)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.如图,PA,PB分别与⊙O相切于A,B两点,若∠C=65°,则∠P的度数为( )
A.65° B.130° C.50° D.100°
11.如图,要使□ABCD成为矩形,需添加的条件是()
A.AB=BC B.∠ABC=90° C.AC⊥BD D.∠1=∠2
12.已知抛物线y=(x﹣)(x﹣)(a为正整数)与x轴交于Ma、Na两点,以MaNa表示这两点间的距离,则M1N1+M2N2+…+M2018N2018的值是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,Rt△ABC的直角边BC在x轴上,直线y=x﹣经过直角顶点B,且平分△ABC的面积,BC=3,点A在反比例函数y=图象上,则k=_______.
14.已知b是a,c的比例中项,若a=4,c=16,则b=________.
15.函数的定义域是__________.
16.不等式1﹣2x<6的负整数解是___________.
17.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为____.
18.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2, AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.写出乙同学在数据整理或绘图过程中的错误(写出一个即可);
甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为 ;该班学生的身高数据的中位数是 ;假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?
20.(6分)如图,一次函数y=k1x+b(k1≠0)与反比例函数的图象交于点A(-1,2),B(m,-1).求一次函数与反比例函数的解析式;在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.
21.(6分)已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=1.
(1)若方程有实数根,求实数m的取值范围;
(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.
22.(8分)在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?
小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.
下面是小林的探究过程,请补充完整:
(1)画出几何图形,明确条件和探究对象;
如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.
(2)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm
0
1
2
3
4
5
6
y/cm
6.9
5.3
4.0
3.3
4.5
6
(说明:补全表格时相关数据保留一位小数)
(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为 cm.
23.(8分)根据图中给出的信息,解答下列问题:
放入一个小球水面升高 ,,放入一个大球水面升高 ;如果要使水面上升到50,应放入大球、小球各多少个?
24.(10分)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.
(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;
(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?
25.(10分)解方程:
(1)x2﹣7x﹣18=0
(2)3x(x﹣1)=2﹣2x
26.(12分)如图,已知的直径,是的弦,过点作的切线交的延长线于点,过点作,垂足为,与交于点,设,的度数分别是,,且.
(1)用含的代数式表示;
(2)连结交于点,若,求的长.
27.(12分)如图,用细线悬挂一个小球,小球在竖直平面内的A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,∠AOB=66°,求细线OB的长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC∥AB,则∠4=30°+50°=80°.故选B.
点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键.
2、A
【解析】
∵∆=12-4×1×(-2)=9>0,
∴方程有两个不相等的实数根.
故选A.
点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
3、B
【解析】
解:画树状图得:
∵共有6种等可能的结果,其中(1,-2),(3,-2)点落在第四项象限,∴P点刚好落在第四象限的概率==.故选B.
点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,熟记各象限内点的符号特点是解题的关键.
4、D
【解析】
根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.
【详解】
点关于y轴对称的点的坐标为,
故选:D.
【点睛】
本题主要考查了平面直角坐标系中点的对称,熟练掌握点的对称特点是解决本题的关键.
5、C
【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
详解:1.21万=1.21×104,
故选:C.
点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
6、B
【解析】
根据平行线的性质可得到两组对应角相等,易得解题步骤;
【详解】
证明:,
,
又,
,
∽.
故选B.
【点睛】
本题考查了相似三角形的判定与性质;关键是证明三角形相似.
7、D
【解析】
运用正确的运算法则即可得出答案.
【详解】
A、应该为a5,错误;B、为2,错误;C、为4,错误;D、正确,所以答案选择D项.
【点睛】
本题考查了四则运算法则,熟悉掌握是解决本题的关键.
8、B
【解析】
根据左视图的定义,从左侧会发现两个正方形摞在一起.
【详解】
从左边看上下各一个小正方形,如图
故选B.
9、A
【解析】
根据点所在象限的点的横纵坐标的符号特点,就可得出已知点所在的象限.
【详解】
解:点(2,3)所在的象限是第一象限.
故答案为:A
【点睛】
考核知识点:点的坐标与象限的关系.
10、C
【解析】
试题分析:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.
考点:切线的性质.
11、B
【解析】
根据一个角是90度的平行四边形是矩形进行选择即可.
【详解】
解:A、是邻边相等,可判定平行四边形ABCD是菱形;
B、是一内角等于90°,可判断平行四边形ABCD成为矩形;
C、是对角线互相垂直,可判定平行四边形ABCD是菱形;
D、是对角线平分对角,可判断平行四边形ABCD成为菱形;
故选:B.
【点睛】
本题主要应用的知识点为:矩形的判定. ①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.
12、C
【解析】
代入y=0求出x的值,进而可得出MaNa=-,将其代入M1N1+M2N2+…+M2018N2018中即可求出结论.
【详解】
解:当y=0时,有(x-)(x-)=0,
解得:x1=,x2=,
∴MaNa=-,
∴M1N1+M2N2+…+M2018N2018=1-+-+…+-=1-=.
故选C.
【点睛】
本题考查了抛物线与x轴的交点坐标、二次函数图象上点的坐标特征以及规律型中数字的变化类,利用二次函数图象上点的坐标特征求出MaNa的值是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
分析:根据题意得出点B的坐标,根据面积平分得出点D的坐标,利用三角形相似可得点A的坐标,从而求出k的值.
详解:根据一次函数可得:点B的坐标为(1,0), ∵BD平分△ABC的面积,BC=3
∴点D的横坐标1.5, ∴点D的坐标为, ∵DE:AB=1:1,
∴点A的坐标为(1,1), ∴k=1×1=1.
点睛:本题主要考查的是反比例函数的性质以及三角形相似的应用,属于中等难度的题型.得出点D的坐标是解决这个问题的关键.
14、±8
【解析】
根据比例中项的定义即可求解.
【详解】
∵b是a,c的比例中项,若a=4,c=16,
∴b2=ac=4×16=64,
∴b=±8,
故答案为±8
【点睛】
此题考查了比例中项的定义,如果作为比例线段的内项是两条相同的线段,即a∶b=b∶c或,那么线段b叫做线段a、c的比例中项.
15、
【解析】
根据二次根式的性质,被开方数大于等于0,可知:x-1≥0,解得x的范围.
【详解】
根据题意得:x-1≥0,
解得:x≥1.
故答案为:.
【点睛】
此题考查二次根式,解题关键在于掌握二次根式有意义的条件.
16、﹣2,﹣1
【解析】试题分析:根据不等式的性质求出不等式的解集,找出不等式的整数解即可.
解:1﹣2x<6,
移项得:﹣2x<6﹣1,
合并同类项得:﹣2x<5,
不等式的两边都除以﹣2得:x>﹣,
∴不等式的负整数解是﹣2,﹣1,
故答案为:﹣2,﹣1.
点评:本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.
17、2
【解析】
试题分析:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,
2πr=,解得r=2cm.
考点:圆锥侧面展开扇形与底面圆之间的关系.
18、或﹣.
【解析】
试题分析:当点F在OB上时,设EF交CD于点P,
可求点P的坐标为(,1).
则AF+AD+DP=3+x, CP+BC+BF=3﹣x,
由题意可得:3+x=2(3﹣x),
解得:x=.
由对称性可求当点F在OA上时,x=﹣,
故满足题意的x的值为或﹣.
故答案是或﹣.
【点睛】
考点:动点问题.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1) 乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一);(2)120°;(3)160或1;(4).
【解析】
(1)对比图①与图②,找出图②中与图①不相同的地方;(2)则159.5﹣164.5这一部分的人数占全班人数的比乘以360°;(3)身高排序为第30和第31的两名同学的身高的平均数;(4)用树状图法求概率.
【详解】
解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一)
(2)根据频数分布直方图中每一组内的频数总和等于总数据个数;
将甲的数据相加可得10+15+20+10+5=60;
由题意可知159.5﹣164.5这一部分所对应的人数为20人,
所以这一部分所对应的扇形圆心角的度数为20÷60×360=120°,
故答案为120°;
(3)根据中位数的求法,将甲的数据从小到大依次排列,
可得第30与31名的数据在第3组,由乙的数据知小于162的数据有36个,则这两个只能是160或1.
故答案为160或1;
(4)列树状图得:
P(一男一女)==.
20、(1)反比例函数的解析式为;一次函数的解析式为y=-x+1;(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).
【解析】
(1)将A点代入求出k2,从而求出反比例函数方程,再联立将B点代入即可求出一次函数方程.
(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根据坐标距离公式计算即可.
【详解】
(1)把A(-1,2)代入,得到k2=-2,
∴反比例函数的解析式为.
∵B(m,-1)在上,∴m=2,
由题意,解得:,∴一次函数的解析式为y=-x+1.
(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).
【点睛】
本题考查一次函数图像与性质和反比例函数的图像和性质,解题的关键是待定系数法,分三种情况讨论.
21、(1)m≥﹣;(2)m=2.
【解析】
(1)利用判别式的意义得到(2m+3)2﹣4(m2+2)≥1,然后解不等式即可;
(2)根据题意x1+x2=2m+3,x1x2=m2+2,由条件得x12+x22=31+x1x2,再利用完全平方公式得(x1+x2)2﹣3x1x2﹣31=1,所以2m+3)2﹣3(m2+2)﹣31=1,然后解关于m的方程,最后利用m的范围确定满足条件的m的值.
【详解】
(1)根据题意得(2m+3)2﹣4(m2+2)≥1,
解得m≥﹣;
(2)根据题意x1+x2=2m+3,x1x2=m2+2,
因为x1x2=m2+2>1,
所以x12+x22=31+x1x2,
即(x1+x2)2﹣3x1x2﹣31=1,
所以(2m+3)2﹣3(m2+2)﹣31=1,
整理得m2+12m﹣28=1,解得m1=﹣14,m2=2,
而m≥﹣;
所以m=2.
【点睛】
本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,.灵活应用整体代入的方法计算.
22、(1)见解析;(1)3.5;(3)见解析; (4)3.1
【解析】
根据题意作图测量即可.
【详解】
(1)取点、画图、测量,得到数据为3.5
故答案为:3.5
(3)由数据得
(4)当△DEF为等边三角形是,EF=DE,由∠B=45°,射线DE⊥BC于点E,则BE=EF.即y=x
所以,当(1)中图象与直线y=x相交时,交点横坐标即为BE的长,由作图、测量可知x约为3.1.
【点睛】
本题为动点问题的函数图象探究题,解得关键是按照题意画图测量,并将条件转化成函数图象研究.
23、详见解析
【解析】
(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可.
(1)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可.
【详解】
解:(1)设一个小球使水面升高x厘米,由图意,得2x=21﹣16,解得x=1.
设一个大球使水面升高y厘米,由图意,得1y=21﹣16,解得:y=2.
所以,放入一个小球水面升高1cm,放入一个大球水面升高2cm.
(1)设应放入大球m个,小球n个,由题意,得
,解得:.
答:如果要使水面上升到50cm,应放入大球4个,小球6个.
24、(1);(2)淇淇与嘉嘉抽到勾股数的可能性不一样.
【解析】
试题分析:
(1)根据等可能事件的概率的定义,分别确定总的可能性和是勾股数的情况的个数;
(2)用列表法列举出所有的情况和两张卡片上的数都是勾股数的情况即可.
试题解析:
(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=;
(2)列表法:
A
B
C
D
A
(A,B)
(A,C)
(A,D)
B
(B,A)
(B,C)
(B,D)
C
(C,A)
(C,B)
(C,D)
D
(D,A)
(D,B)
(D,C)
由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,
∴P2=,
∵P1=,P2=,P1≠P2
∴淇淇与嘉嘉抽到勾股数的可能性不一样.
25、(1)x1=9,x2=﹣2;(2)x1=1,x2=﹣ .
【解析】
(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;
(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
【详解】
解:(1)x2﹣7x﹣18=0,
(x﹣9)(x+2)=0,
x﹣9=0,x+2=0,
x1=9,x2=﹣2;
(2)3x(x﹣1)=2﹣2x,
3x(x﹣1)+2(x﹣1)=0,
(x﹣1)(3x+2)=0,
x﹣1=0,3x+2=0,
x1=1,x2=﹣ .
【点睛】
本题考查了解一元二次方程,熟练掌握因式分解法是解此题的关键.
26、(1);(2)
【解析】
(1)连接OC,根据切线的性质得到OC⊥DE,可以证明AD∥OC,根据平行线的性质可得,则根据等腰三角形的性质可得,利用,化简计算即可得到答案;
(2)连接CF,根据,可得,利用中垂线和等腰三角形的性质可证四边形是平行四边形,得到△AOF为等边三角形,由并可得四边形是菱形,可证是等边三角形,有∠FAO=60°,再根据弧长公式计算即可.
【详解】
解:(1)如图示,连结,
∵是的切线,∴.
又,∴,
∴,
∴.
∵,
∴.∴.
∵,
∴.
∴,即.
(2)如图示,连结,
∵,,
∴,
∴,
∴,
∴,
∵,
∴四边形是平行四边形,
∵,
∴四边形是菱形,
∴,
∴是等边三角形,
∴,
∴,
∵,
∴的长.
【点睛】
本题考查的是切线的性质、菱形的判定和性质、弧长的计算,掌握切线的性质定理、弧长公式是解题的关键.
27、15cm
【解析】
试题分析:设细线OB的长度为xcm,作AD⊥OB于D,证出四边形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在Rt△AOD中,由三角函数得出方程,解方程即可.
试题解析:设细线OB的长度为xcm,作AD⊥OB于D,如图所示:
∴∠ADM=90°,
∵∠ANM=∠DMN=90°,
∴四边形ANMD是矩形,
∴AN=DM=14cm,
∴DB=14﹣5=9cm,
∴OD=x﹣9,
在Rt△AOD中,cos∠AOD=,
∴cos66°==0.40,
解得:x=15,
∴OB=15cm.
2024年江西省萍乡市安源区中考数学二模试卷(含解析): 这是一份2024年江西省萍乡市安源区中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江西省萍乡市安源区中考二模数学试题: 这是一份2024年江西省萍乡市安源区中考二模数学试题,文件包含2024年江西省萍乡市安源区中考二模数学试题pdf、2024年江西省萍乡市安源区中考二模数学试题答案pdf等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。
2022年江西省萍乡市安源区十校联考最后数学试题含解析: 这是一份2022年江西省萍乡市安源区十校联考最后数学试题含解析,共19页。