![2021-2022学年江苏省扬州市江都区郭村中学中考数学全真模拟试卷含解析第1页](http://img-preview.51jiaoxi.com/2/3/13309344/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年江苏省扬州市江都区郭村中学中考数学全真模拟试卷含解析第2页](http://img-preview.51jiaoxi.com/2/3/13309344/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年江苏省扬州市江都区郭村中学中考数学全真模拟试卷含解析第3页](http://img-preview.51jiaoxi.com/2/3/13309344/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021-2022学年江苏省扬州市江都区郭村中学中考数学全真模拟试卷含解析
展开
这是一份2021-2022学年江苏省扬州市江都区郭村中学中考数学全真模拟试卷含解析,共18页。试卷主要包含了已知点P,某班7名女生的体重等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,OP平分∠AOB,PC⊥OA于C,点D是OB上的动点,若PC=6cm,则PD的长可以是( )
A.7cm B.4cm C.5cm D.3cm
2.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为( )
A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)
3.下列图形中既是中心对称图形又是轴对称图形的是
A. B. C. D.
4.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为( )
A. B. C.4 D.2+
5.已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是( )
A.m+n<0 B.m+n>0 C.m<n D.m>n
6.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为( )
A.4 B.3 C.2 D.1
7.某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是( )
A.74 B.44 C.42 D.40
8.二次函数y=a(x﹣m)2﹣n的图象如图,则一次函数y=mx+n的图象经过( )
A.第一、二、三象限 B.第一、二、四象限
C.第二、三、四象限 D.第一、三、四象限
9.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是( )
A. B. C.- D.
10.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )
A.60° B.65° C.55° D.50°
二、填空题(共7小题,每小题3分,满分21分)
11.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A,B分别在l3,l2上,则sinα的值是_____.
12.某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标
价为___________元.
13.计算:3﹣(﹣2)=____.
14.如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,则tan∠DBE的值是_____.
15.如图,点A(m,2),B(5,n)在函数(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为 .
16.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.
17.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是________.
三、解答题(共7小题,满分69分)
18.(10分)计算: ÷ – + 20180
19.(5分)如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.求BF的长.
20.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 .
21.(10分)为营造浓厚的创建全国文明城市氛围,东营市某中学委托制衣厂制作“最美东营人”和“最美志愿者”两款文化衫.若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需145元.
(1)求“最美东营人”和“最美志愿者”两款文化衫每件各多少元?
(2)若该中学要购进“最美东营人”和“最美志愿者”两款文化衫共90件,总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,那么该中学有哪几种购买方案?
22.(10分)计算:|﹣|﹣﹣(2﹣π)0+2cos45°. 解方程: =1﹣
23.(12分) (1)如图,四边形为正方形,,那么与相等吗?为什么?
(2)如图,在中,,,为边的中点,于点,交于,求的值
(3)如图,中,,为边的中点,于点,交于,若,,求.
24.(14分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20%,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台. 求甲、乙两种品牌空调的进货价; 该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元/台,乙种品牌空调的售价为3500元/台.请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
过点P作PD⊥OB于D,根据角平分线上的点到角的两边距离相等可得PC=PD,再根据垂线段最短解答即可.
【详解】
解:作PD⊥OB于D,
∵OP平分∠AOB,PC⊥OA,PD⊥OA,
∴PD=PC=6cm,
则PD的最小值是6cm,
故选A.
【点睛】
考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.
2、D
【解析】
解:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=2,∴AD===,∴BD===1.∵点B坐标为(1,0),∴A点的坐标为(4,).∵BD=1,∴BD1=1,∴D1坐标为(﹣2,0),∴A1坐标为(﹣2,﹣).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣﹣2).故选D.
点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.
3、B
【解析】
根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.
【详解】
A、是轴对称图形,不是中心对称图形,不符合题意;
B、是轴对称图形,也是中心对称图形,符合题意;
C、是轴对称图形,不是中心对称图形,不符合题意;
D、不是轴对称图形,是中心对称图形,不符合题意.
故选B.
4、B
【解析】
根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.
【详解】
如图:
BC=AB=AC=1,
∠BCB′=120°,
∴B点从开始至结束所走过的路径长度为2×弧BB′=2×.故选B.
5、D
【解析】
根据反比例函数的性质,可得答案.
【详解】
∵y=−的k=-2<1,图象位于二四象限,a<1,
∴P(a,m)在第二象限,
∴m>1;
∵b>1,
∴Q(b,n)在第四象限,
∴n<1.
∴n<1<m,
即m>n,
故D正确;
故选D.
【点睛】
本题考查了反比例函数的性质,利用反比例函数的性质:k<1时,图象位于二四象限是解题关键.
6、A
【解析】
分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.
详解:根据题意,得:=2x
解得:x=3,
则这组数据为6、7、3、9、5,其平均数是6,
所以这组数据的方差为 [(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,
故选A.
点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.
7、C
【解析】
试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.
考点:众数.
8、A
【解析】
由抛物线的顶点坐标在第四象限可得出m>0,n>0,再利用一次函数图象与系数的关系,即可得出一次函数y=mx+n的图象经过第一、二、三象限.
【详解】
解:观察函数图象,可知:m>0,n>0,
∴一次函数y=mx+n的图象经过第一、二、三象限.
故选A.
【点睛】
本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k>0,b>0⇔y=kx+b的图象在一、二、三象限”是解题的关键.
9、A
【解析】
先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.
【详解】
∵∠ACB=90°,AC=BC=1,
∴AB=,
∴S扇形ABD=,
又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,
∴Rt△ADE≌Rt△ACB,
∴S阴影部分=S△ADE+S扇形ABD−S△ABC=S扇形ABD=,
故选A.
【点睛】
本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.
10、A
【解析】
试题分析:根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.
解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,
∴∠BCD+∠CDE=540°﹣300°=240°,
∵∠BCD、∠CDE的平分线在五边形内相交于点O,
∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,
∴∠P=180°﹣120°=60°.
故选A.
考点:多边形内角与外角;三角形内角和定理.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正弦等于对边比斜边列式计算即可得解.
【详解】
如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,
∵∠CAD+∠ACD=90°,
∠BCE+∠ACD=90°,
∴∠CAD=∠BCE,
在等腰直角△ABC中,AC=BC,
在△ACD和△CBE中,
,
∴△ACD≌△CBE(AAS),
∴CD=BE=1,
∴AD=2,
∴AC=,
∴AB=AC=,
∴sinα=,
故答案为.
【点睛】
本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,正确添加辅助线构造出全等三角形是解题的关键.
12、28
【解析】
设标价为x元,那么0.9x-21=21×20%,x=28.
13、2+2
【解析】
根据平面向量的加法法则计算即可.
【详解】
3﹣(﹣2)
=3﹣+2
=2+2,
故答案为:2+2,
【点睛】
本题考查平面向量,熟练掌握平面向量的加法法则是解题的关键.
14、1.
【解析】
求出AD=AB,设AD=AB=5x,AE=3x,则5x﹣3x=4,求出x,得出AD=10,AE=6,在Rt△ADE中,由勾股定理求出DE=8,在Rt△BDE中得出代入求出即可,
【详解】
解:∵四边形ABCD是菱形,
∴AD=AB,
∵cosA=,BE=4,DE⊥AB,
∴设AD=AB=5x,AE=3x,
则5x﹣3x=4,
x=1,
即AD=10,AE=6,
在Rt△ADE中,由勾股定理得:
在Rt△BDE中,
故答案为:1.
【点睛】
本题考查了菱形的性质,勾股定理,解直角三角形的应用,关键是求出DE的长.
15、2.
【解析】
试题分析:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=2,∴A(2,2),∴k=2×2=2.故答案为2.
考点:2.反比例函数系数k的几何意义;2.平移的性质;3.综合题.
16、
【解析】
随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.
【详解】
抬头看信号灯时,是绿灯的概率为.
故答案为:.
【点睛】
此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=2.
17、4.027
【解析】
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
详解:4 0270 0000用科学记数法表示是4.027×1.
故答案为4.027×1.
点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
三、解答题(共7小题,满分69分)
18、2
【解析】
根据实数的混合运算法则进行计算.
【详解】
解:原式= -( -1)+1=- +1+1=2
【点睛】
此题重点考察学生对实数的混合运算的应用,熟练掌握计算方法是解题的关键.
19、BF的长度是1cm.
【解析】
利用“两角法”证得△BEF∽△CDF,利用相似三角形的对应边成比例来求线段CF的长度.
【详解】
解:如图,在矩形ABCD中:∠DFC=∠EFB,∠EBF=∠FCD=90°,
∴△BEF∽△CDF;
∴=,
又∵AD=BC=260cm ,AB=CD=130cm ,AE=60cm
∴BE=70cm, CD=130cm,BC=260cm ,CF=(260-BF)cm
∴=,
解得:BF=1.
即:BF的长度是1cm.
【点睛】
本题主要考查相似三角形的判定和性质,关键要掌握:有两角对应相等的两三角形相似;两三角形相似,对应边的比相等.
20、(1)画图见解析,(2,-2);(2)画图见解析,(1,0);
【解析】
(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.
【详解】
(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);
(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),
故答案为(1)(2,-2);(2)(1,0)
【点睛】
此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.
21、(1)“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)有三种方案,具体见解析.
【解析】
(1)设“最美东营人”文化衫每件x元,“最美志愿者”文化衫每件y元,根据若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需11元建立方程组求出其解即可;
(2)设购买“最美东营人”文化衫m件,根据总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,列出不等式组,然后求m的正整数解.
【详解】
(1)设“最美东营人”文化衫每件x元,“最美志愿者”文化衫每件y元,
由题意,得
,
解得:
.
答:“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;
(2)设购买“最美东营人”文化衫m件,则购买“最美志愿者”文化衫(90-m)件,
由题意,得,
解得:41<m<1.
∵m是整数,
∴m=42,43,2.
则90-m=48,47,3.
答:方案一:购买“最美东营人”文化衫42件,“最美志愿者”文化衫48件;
方案二:购买“最美东营人”文化衫43件,“最美志愿者”文化衫47件;
方案三:购买“最美东营人”文化衫2件,“最美志愿者”文化衫3件.
【点睛】
本题考查了二元一次方程组的运用,一元一次不等式组的运用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.
22、(1)﹣1;(2)x=﹣1是原方程的根.
【解析】
(1)直接化简二次根式进而利用零指数幂的性质以及特殊角三角函数值进而得出答案;
(2)直接去分母再解方程得出答案.
【详解】
(1)原式=﹣2﹣1+2×
=﹣﹣1+
=﹣1;
(2)去分母得:3x=x﹣3+1,
解得:x=﹣1,
检验:当x=﹣1时,x﹣3≠0,
故x=﹣1是原方程的根.
【点睛】
此题主要考查了实数运算和解分式方程,正确掌握解分式方程的方法是解题关键.
23、 (1)相等,理由见解析;(2)2;(3).
【解析】
(1)先判断出AB=AD,再利用同角的余角相等,判断出∠ABF=∠DAE,进而得出△ABF≌△DAE,即可得出结论;
(2)构造出正方形,同(1)的方法得出△ABD≌△CBG,进而得出CG=AB,再判断出△AFB∽△CFG,即可得出结论;
(3)先构造出矩形,同(1)的方法得,∠BAD=∠CBP,进而判断出△ABD∽△BCP,即可求出CP,再同(2)的方法判断出△CFP∽△AFB,建立方程即可得出结论.
【详解】
解:(1)BF=AE,理由:
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=∠D=90°,
∴∠BAE+∠DAE=90°,
∵AE⊥BF,
∴∠BAE+∠ABF=90°,
∴∠ABF=∠DAE,
在△ABF和△DAE中,
∴△ABF≌△DAE,
∴BF=AE,
(2) 如图2,
过点A作AM∥BC,过点C作CM∥AB,两线相交于M,延长BF交CM于G,
∴四边形ABCM是平行四边形,
∵∠ABC=90°,
∴▱ABCM是矩形,
∵AB=BC,
∴矩形ABCM是正方形,
∴AB=BC=CM,
同(1)的方法得,△ABD≌△BCG,
∴CG=BD,
∵点D是BC中点,
∴BD=BC=CM,
∴CG=CM=AB,
∵AB∥CM,
∴△AFB∽△CFG,
∴
(3) 如图3,
在Rt△ABC中,AB=3,BC=4,
∴AC=5,
∵点D是BC中点,
∴BD=BC=2,
过点A作AN∥BC,过点C作CN∥AB,两线相交于N,延长BF交CN于P,
∴四边形ABCN是平行四边形,
∵∠ABC=90°,∴▱ABCN是矩形,
同(1)的方法得,∠BAD=∠CBP,
∵∠ABD=∠BCP=90°,
∴△ABD∽△BCP,
∴
∴
∴CP=
同(2)的方法,△CFP∽△AFB,
∴
∴
∴CF=.
【点睛】
本题是四边形综合题,主要考查了正方形的性质和判定,平行四边形的判定,矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,构造出(1)题的图形,是解本题的关键.
24、(1)甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元
【解析】
(1)设甲种品牌空调的进货价为x元/台,则乙种品牌空调的进货价为1.2x元/台,根据数量=总价÷单价可得出关于x的分式方程,解之并检验后即可得出结论;
(2)设购进甲种品牌空调a台,所获得的利润为y元,则购进乙种品牌空调(10-a)台,根据总价=单价×数量结合总价不超过16000 元,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由总利润=单台利润×购进数量即可得出y关于a的函数关系式,利用一次函数的性质即可解决最值问题.
【详解】
(1)由(1)设甲种品牌的进价为x元,则乙种品牌空调的进价为(1+20%)x元,
由题意,得 ,
解得x=1500,
经检验,x=1500是原分式方程的解,
乙种品牌空调的进价为(1+20%)×1500=1800(元).
答:甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;
(2)设购进甲种品牌空调a台,则购进乙种品牌空调(10-a)台,
由题意,得1500a+1800(10-a)≤16000,
解得 ≤a,
设利润为w,则w=(2500-1500)a+(3500-1800)(10-a)=-700a+17000,
因为-700
相关试卷
这是一份江苏省扬州市江都区国际校2021-2022学年中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了一、单选题,下列运算正确的是等内容,欢迎下载使用。
这是一份江苏省扬州市江都区郭村中学2021-2022学年中考数学对点突破模拟试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,将一副三角尺,若点M等内容,欢迎下载使用。
这是一份2021-2022学年江苏省扬州市江都区八校(大桥镇中学中考数学模拟精编试卷含解析,共22页。试卷主要包含了某一公司共有51名员工,一、单选题等内容,欢迎下载使用。