2021-2022学年江苏省镇江外国语学校中考四模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.若关于 x 的一元一次不等式组 无解,则 a 的取值范围是( )
A.a≥3 B.a>3 C.a≤3 D.a<3
2.﹣2的绝对值是( )
A.2 B. C. D.
3.计算1+2+22+23+…+22010的结果是( )
A.22011–1 B.22011+1
C. D.
4.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为( )
A. B. C. D.
5.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )
A. B. C. D.
6.如图,,交于点,平分,交于. 若,则 的度数为( )
A.35o B.45o C.55o D.65o
7.下面的几何体中,主视图为圆的是( )
A. B. C. D.
8.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )
A. B. C. D.
9.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE∥BC的是( )
A.= B.= C.= D.=
10.如图,要使□ABCD成为矩形,需添加的条件是()
A.AB=BC B.∠ABC=90° C.AC⊥BD D.∠1=∠2
二、填空题(共7小题,每小题3分,满分21分)
11.计算的结果为_____.
12.如图,在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的正方形ABCD的周长为_____.
13.抛物线y=﹣x2+bx+c的部分图象如图所示,则关于x的一元二次方程﹣x2+bx+c=0的解为_____.
14.如果点P1(2,y1)、P2(3,y2) 在抛物线上,那么 y1 ______ y2.(填“>”,“<”或“=”).
15.已知一个多边形的每一个内角都等于108°,则这个多边形的边数是 .
16.如图,在边长为1正方形ABCD中,点P是边AD上的动点,将△PAB沿直线BP翻折,点A的对应点为点Q,连接BQ、DQ.则当BQ+DQ的值最小时,tan∠ABP=_____.
17.已知函数y=|x2﹣x﹣2|,直线y=kx+4恰好与y=|x2﹣x﹣2|的图象只有三个交点,则k的值为_____.
三、解答题(共7小题,满分69分)
18.(10分)我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?
19.(5分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.求∠APB的度数;已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?
.
20.(8分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.
请根据以上的信息,回答下列问题:
(1)补全扇形统计图和条形统计图;
(2)所抽查学生参加社会实践活动天数的众数是 (选填:A、B、C、D、E);
(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?
21.(10分)如图,已知函数(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.
若AC=OD,求a、b的值;若BC∥AE,求BC的长.
22.(10分)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.
(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?
(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.
23.(12分)某校检测学生跳绳水平,抽样调查了部分学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图
(1)D组的人数是 人,补全频数分布直方图,扇形图中m= ;
(2)本次调查数据中的中位数落在 组;
(3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校4500名学生中“1分钟跳绳”成绩为优秀的大约有多少人?
24.(14分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.
(1)求证:AH是⊙O的切线;
(2)若OB=4,AC=6,求sin∠ACB的值;
(3)若,求证:CD=DH.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
先求出各不等式的解集,再与已知解集相比较求出 a 的取值范围.
【详解】
由 x﹣a>0 得,x>a;由 1x﹣1<2(x+1)得,x<1,
∵此不等式组的解集是空集,
∴a≥1.
故选:A.
【点睛】
考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
2、A
【解析】
分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.
3、A
【解析】
可设其和为S,则2S=2+22+23+24+…+22010+22011,两式相减可得答案.
【详解】
设S=1+2+22+23+…+22010①
则2S=2+22+23+…+22010+22011②
②-①得S=22011-1.
故选A.
【点睛】
本题考查了因式分解的应用;设出和为S,并求出2S进行做差求解是解题关键.
4、A
【解析】
∵在Rt△ABC中,∠C=90°,AB=4,AC=1,
∴BC== ,
则cosB== ,
故选A
5、C
【解析】
严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.
【详解】
根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.
故选C.
【点睛】
本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
6、D
【解析】
分析:根据平行线的性质求得∠BEC的度数,再由角平分线的性质即可求得∠CFE 的度数.
详解:
又∵EF平分∠BEC,
.
故选D.
点睛:本题主要考查了平行线的性质和角平分线的定义,熟知平行线的性质和角平分线的定义是解题的关键.
7、C
【解析】
试题解析:A、的主视图是矩形,故A不符合题意;
B、的主视图是正方形,故B不符合题意;
C、的主视图是圆,故C符合题意;
D、的主视图是三角形,故D不符合题意;
故选C.
考点:简单几何体的三视图.
8、D
【解析】
试题分析:A.是轴对称图形,故本选项错误;
B.是轴对称图形,故本选项错误;
C.是轴对称图形,故本选项错误;
D.不是轴对称图形,故本选项正确.
故选D.
考点:轴对称图形.
9、D
【解析】
根据平行线分线段成比例定理的逆定理,当或时,,然后可对各选项进行判断.
【详解】
解:当或时,,
即或.
所以D选项是正确的.
【点睛】
本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.
10、B
【解析】
根据一个角是90度的平行四边形是矩形进行选择即可.
【详解】
解:A、是邻边相等,可判定平行四边形ABCD是菱形;
B、是一内角等于90°,可判断平行四边形ABCD成为矩形;
C、是对角线互相垂直,可判定平行四边形ABCD是菱形;
D、是对角线平分对角,可判断平行四边形ABCD成为菱形;
故选:B.
【点睛】
本题主要应用的知识点为:矩形的判定. ①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.
二、填空题(共7小题,每小题3分,满分21分)
11、﹣2
【解析】
根据分式的运算法则即可得解.
【详解】
原式===,
故答案为:.
【点睛】
本题主要考查了同分母的分式减法,熟练掌握相关计算法则是解决本题的关键.
12、1
【解析】
根据题意和二次函数的性质可以求得线段AB的长度,从而可以求得正方形ABCD的周长.
【详解】
∵在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,
∴点A的横坐标是0,该抛物线的对称轴为直线x=﹣,
∵点B是这条抛物线上的另一点,且AB∥x轴,
∴点B的横坐标是﹣3,
∴AB=|0﹣(﹣3)|=3,
∴正方形ABCD的周长为:3×4=1,
故答案为:1.
【点睛】
本题考查了二次函数图象上点的坐标特征、正方形的性质,解题的关键是找出所求问题需要的条件.
13、x1=1,x2=﹣1.
【解析】
直接观察图象,抛物线与x轴交于1,对称轴是x=﹣1,所以根据抛物线的对称性可以求得抛物线与x轴的另一交点坐标,从而求得关于x的一元二次方程﹣x2+bx+c=0的解.
【详解】
解:观察图象可知,抛物线y=﹣x2+bx+c与x轴的一个交点为(1,0),对称轴为x=﹣1,
∴抛物线与x轴的另一交点坐标为(﹣1,0),
∴一元二次方程﹣x2+bx+c=0的解为x1=1,x2=﹣1.
故本题答案为:x1=1,x2=﹣1.
【点睛】
本题考查了二次函数与一元二次方程的关系.一元二次方程-x2+bx+c=0的解实质上是抛物线y=-x2+bx+c与x轴交点的横坐标的值.
14、>
【解析】
分析:首先求得抛物线y=﹣x2+2x的对称轴是x=1,利用二次函数的性质,点M、N在对称轴的右侧,y随着x的增大而减小,得出答案即可.
详解:抛物线y=﹣x2+2x的对称轴是x=﹣=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y1>y2.
故答案为>.
点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题.
15、1
【解析】
试题分析:∵多边形的每一个内角都等于108°,∴每一个外角为72°.
∵多边形的外角和为360°,∴这个多边形的边数是:360÷÷72=1.
16、﹣1
【解析】
连接DB,若Q点落在BD上,此时和最短,且为,设AP=x,则PD=1﹣x,PQ=x.解直角三角形得到AP=﹣1,根据三角函数的定义即可得到结论.
【详解】
如图:
连接DB,若Q点落在BD上,此时和最短,且为,
设AP=x,则PD=1﹣x,PQ=x.
∵∠PDQ=45°,
∴PD=PQ,即1﹣x=,
∴x=﹣1,
∴AP=﹣1,
∴tan∠ABP==﹣1,
故答案为:﹣1.
【点睛】
本题考查了翻折变换(折叠问题),正方形的性质,轴对称﹣最短路线问题,正确的理解题意是解题的关键.
17、1﹣1或﹣1
【解析】
直线y=kx+4与抛物线y=-x1+x+1(-1≤x≤1)相切时,直线y=kx+4与y=|x1-x-1|的图象恰好有三个公共点,即-x1+x+1=kx+4有相等的实数解,利用根的判别式的意义可求出此时k的值,另外当y=kx+4过(1,0)时,也满足条件.
【详解】
解:当y=0时,x1-x-1=0,解得x1=-1,x1=1,
则抛物线y=x1-x-1与x轴的交点为(-1,0),(1,0),
把抛物线y=x1-x-1图象x轴下方的部分沿x轴翻折到x轴上方,
则翻折部分的抛物线解析式为y=-x1+x+1(-1≤x≤1),
当直线y=kx+4与抛物线y=-x1+x+1(-1≤x≤1)相切时,
直线y=kx+4与函数y=|x1-x-1|的图象恰好有三个公共点,
即-x1+x+1=kx+4有相等的实数解,整理得x1+(k-1)x+1=0,△=(k-1)1-8=0,
解得k=1±1 ,
所以k的值为1+1或1-1.
当k=1+1时,经检验,切点横坐标为x=-<-1不符合题意,舍去.
当y=kx+4过(1,0)时,k=-1,也满足条件,
故答案为1-1或-1.
【点睛】
本题考查了二次函数与几何变换:翻折变化不改变图形的大小,故|a|不变,利用顶点式即可求得翻折后的二次函数解析式;也可利用绝对值的意义,直接写出自变量在-1≤x≤1上时的解析式。
三、解答题(共7小题,满分69分)
18、1.
【解析】
分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.
详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=1,
所以二进制中的数101011等于十进制中的1.
点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.
19、(1)30°;(2)海监船继续向正东方向航行是安全的.
【解析】
(1)根据直角的性质和三角形的内角和求解;
(2)过点P作PH⊥AB于点H,根据解直角三角形,求出点P到AB的距离,然后比较即可.
【详解】
解:(1)在△APB中,∠PAB=30°,∠ABP=120°
∴∠APB=180°-30°-120°=30°
(2)过点P作PH⊥AB于点H
在Rt△APH中,∠PAH=30°,AH=PH
在Rt△BPH中,∠PBH=30°,BH=PH
∴AB=AH-BH=PH=50
解得PH=25>25,因此不会进入暗礁区,继续航行仍然安全.
考点:解直角三角形
20、(1)见解析;(2)A;(3)800人.
【解析】
(1)用A组人数除以它所占的百分比求出样本容量,利用360°乘以对应的百分比即可求得扇形圆心角的度数,再求得时间是8天的人数,从而补全扇形统计图和条形统计图;
(2)根据众数的定义即可求解;
(3)利用总人数2000乘以对应的百分比即可求解.
【详解】
解:(1)∵被调查的学生人数为24÷40%=60人,
∴D类别人数为60﹣(24+12+15+3)=6人,
则D类别的百分比为×100%=10%,
补全图形如下:
(2)所抽查学生参加社会实践活动天数的众数是A,
故答案为:A;
(3)估计参加社会实践“活动天数不少于7天”的学生大约有2000×(25%+10%+5%)=800人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
21、(1)a=,b=2;(2)BC=.
【解析】
试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b的值;
(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),得出tan∠ADF=,tan∠AEC=,进而求出m的值,即可得出答案.
试题解析:(1)∵点B(2,2)在函数y=(x>0)的图象上,
∴k=4,则y=,
∵BD⊥y轴,∴D点的坐标为:(0,2),OD=2,
∵AC⊥x轴,AC=OD,∴AC=3,即A点的纵坐标为:3,
∵点A在y=的图象上,∴A点的坐标为:(,3),
∵一次函数y=ax+b的图象经过点A、D,
∴,
解得:,b=2;
(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),
∵BD∥CE,且BC∥DE,
∴四边形BCED为平行四边形,
∴CE=BD=2,
∵BD∥CE,∴∠ADF=∠AEC,
∴在Rt△AFD中,tan∠ADF=,
在Rt△ACE中,tan∠AEC=,
∴=,
解得:m=1,
∴C点的坐标为:(1,0),则BC=.
考点:反比例函数与一次函数的交点问题.
22、(1)甲种材料每千克25元,乙种材料每千克35元.(2)共有四种方案;(3)生产A产品21件,B产品39件成本最低.
【解析】
试题分析:(1)、首先设甲种材料每千克x元, 乙种材料每千克y元,根据题意列出二元一次方程组得出答案;(2)、设生产B产品a件,则A产品(60-a)件,根据题意列出不等式组,然后求出a的取值范围,得出方案;得出生产成本w与a的函数关系式,根据函数的增减性得出答案.
试题解析:(1)设甲种材料每千克x元, 乙种材料每千克y元,
依题意得:解得:
答:甲种材料每千克25元, 乙种材料每千克35元.
(2)生产B产品a件,生产A产品(60-a)件. 依题意得:
解得:
∵a的值为非负整数 ∴a=39、40、41、42
∴共有如下四种方案:A种21件,B种39件;A种20件,B种40件;A种19件,B种41件;A种18件,B种42件
(3)、答:生产A产品21件,B产品39件成本最低.
设生产成本为W元,则W与a的关系式为:w=(25×4+35×1+40)(60-a)+(35×+25×3+50)a=55a+10500
∵k=55>0 ∴W随a增大而增大∴当a=39时,总成本最低.
考点:二元一次方程组的应用、不等式组的应用、一次函数的应用.
23、(1)16、84°;(2)C;(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有3000(人)
【解析】
(1)根据百分比=所长人数÷总人数,圆心角=百分比,计算即可;
(2)根据中位数的定义计算即可;
(3)用一半估计总体的思考问题即可;
【详解】
(1)由题意总人数人,
D组人数人;
B组的圆心角为;
(2)根据A组6人,B组14人,C组19人,D组16人,E组5人可知本次调查数据中的中位数落在C组;
(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有人.
【点睛】
本题主要考查了数据的统计,熟练掌握扇形图圆心角度数求解方法,总体求解方法等相关内容是解决本题的关键.
24、(1)证明见解析;(2);(3)证明见解析.
【解析】
(1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;
(2)利用正弦的定义计算;
(3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=CE,根据等腰三角形的性质证明.
【详解】
(1)证明:连接OA,
由圆周角定理得,∠ACB=∠ADB,
∵∠ADE=∠ACB,
∴∠ADE=∠ADB,
∵BD是直径,
∴∠DAB=∠DAE=90°,
在△DAB和△DAE中,
,
∴△DAB≌△DAE,
∴AB=AE,又∵OB=OD,
∴OA∥DE,又∵AH⊥DE,
∴OA⊥AH,
∴AH是⊙O的切线;
(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,
∴∠E=∠ACD,
∴AE=AC=AB=1.
在Rt△ABD中,AB=1,BD=8,∠ADE=∠ACB,
∴sin∠ADB==,即sin∠ACB=;
(3)证明:由(2)知,OA是△BDE的中位线,
∴OA∥DE,OA=DE.
∴△CDF∽△AOF,
∴=,
∴CD=OA=DE,即CD=CE,
∵AC=AE,AH⊥CE,
∴CH=HE=CE,
∴CD=CH,
∴CD=DH.
【点睛】
本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.
2023年江苏省镇江外国语学校中考数学一模试卷(含解析): 这是一份2023年江苏省镇江外国语学校中考数学一模试卷(含解析),共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省镇江外国语学校2021-2022学年中考五模数学试题含解析: 这是一份江苏省镇江外国语学校2021-2022学年中考五模数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,估计-1的值在,下列说法中,正确的个数共有等内容,欢迎下载使用。
江苏省镇江外国语校2021-2022学年中考数学四模试卷含解析: 这是一份江苏省镇江外国语校2021-2022学年中考数学四模试卷含解析,共23页。试卷主要包含了答题时请按要求用笔,比1小2的数是,4的平方根是,在平面直角坐标系中,已知点A等内容,欢迎下载使用。