终身会员
搜索
    上传资料 赚现金
    2021-2022学年乐山市沙湾区市级名校中考数学模拟试题含解析
    立即下载
    加入资料篮
    2021-2022学年乐山市沙湾区市级名校中考数学模拟试题含解析01
    2021-2022学年乐山市沙湾区市级名校中考数学模拟试题含解析02
    2021-2022学年乐山市沙湾区市级名校中考数学模拟试题含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年乐山市沙湾区市级名校中考数学模拟试题含解析

    展开
    这是一份2021-2022学年乐山市沙湾区市级名校中考数学模拟试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.方程的解为( )
    A.x=﹣1B.x=1C.x=2D.x=3
    2.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有( )
    A.2个B.3个C.4个D.5个
    3.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛.小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )
    A.方差 B.极差 C.中位数 D.平均数
    4.如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=( )
    A.23°B.46°C.67°D.78°
    5.如图,AB为⊙O的直径,C为⊙O上的一动点(不与A、B重合),CD⊥AB于D,∠OCD的平分线交⊙O于P,则当C在⊙O上运动时,点P的位置( )
    A.随点C的运动而变化
    B.不变
    C.在使PA=OA的劣弧上
    D.无法确定
    6.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是 , 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。同学们,你能补出这个常数吗?它应该是( )
    A.2 B.3 C.4 D.5
    7.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是( )
    A.B.C.D.
    8.已知一次函数 y=kx+b 的大致图象如图所示,则关于 x 的一元二次方程 x2﹣2x+kb+1=0 的根的情况是( )
    A.有两个不相等的实数根B.没有实数根
    C.有两个相等的实数根D.有一个根是 0
    9.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )
    A.点AB.点BC.A,B之间D.B,C之间
    10.如图,C,B是线段AD上的两点,若,,则AC与CD的关系为( )

    A.B.C.D.不能确定
    二、填空题(共7小题,每小题3分,满分21分)
    11.当x=_________时,分式的值为零.
    12.关于x的一元二次方程x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12﹣x1x2+x22的值是_____.
    13.如图所示,轮船在处观测灯塔位于北偏西方向上,轮船从处以每小时海里的速度沿南偏西方向匀速航行,小时后到达码头处,此时,观测灯塔位于北偏西方向上,则灯塔与码头的距离是______海里(结果精确到个位,参考数据:,,)
    14.已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于______.
    15.定义一种新运算:x*y=,如2*1==3,则(4*2)*(﹣1)=_____.
    16.若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是_____三角形.
    17.如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是_____.
    三、解答题(共7小题,满分69分)
    18.(10分)先化简,再求值:,其中m是方程的根.
    19.(5分)如图,四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O的切线,交DA的延长线于点E,连接BD,且∠E=∠DBC.
    (1)求证:DB平分∠ADC;
    (2)若EB=10,CD=9,tan∠ABE=,求⊙O的半径.
    20.(8分)如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.
    (1)求证:CD与⊙O相切;
    (2)若BF=24,OE=5,求tan∠ABC的值.
    21.(10分)(1)计算:;
    (2)化简:.
    22.(10分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.求证:CD是⊙O的切线;若∠D=30°,BD=2,求图中阴影部分的面积.
    23.(12分)如图,抛物线y=ax2+bx﹣2经过点A(4,0),B(1,0).
    (1)求出抛物线的解析式;
    (2)点D是直线AC上方的抛物线上的一点,求△DCA面积的最大值;
    (3)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
    24.(14分)甲、乙、丙、丁四位同学进行乒乓球单打比赛,要从中选出两位同学打第一场比赛. 若确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中乙同学的概率是 . 若随机抽取两位同学,请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率.
    参考答案
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    观察可得最简公分母是(x-3)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
    【详解】
    方程的两边同乘(x−3)(x+1),得
    (x−2) (x+1)=x(x−3),

    解得x=1.
    检验:把x=1代入(x−3)(x+1)=-4≠0.
    ∴原方程的解为:x=1.
    故选B.
    【点睛】
    本题考查的知识点是解分式方程,解题关键是注意解得的解要进行检验.
    2、C
    【解析】
    分为三种情况:①AP=OP,②AP=OA,③OA=OP,分别画出即可.
    【详解】
    如图,
    分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论.
    ∴以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个.
    故选C.
    【点睛】
    本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.
    3、C
    【解析】13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,
    故只要知道自己的分数和中位数就可以知道是否获奖了.
    故选C.
    4、B
    【解析】
    根据圆的半径相等可知AB=AC,由等边对等角求出∠ACB,再由平行得内错角相等,最后由平角180°可求出∠1.
    【详解】
    根据题意得:AB=AC,
    ∴∠ACB=∠ABC=67°,
    ∵直线l1∥l2,
    ∴∠2=∠ABC=67°,
    ∵∠1+∠ACB+∠2=180°,
    ∴∠ACB=180°-∠1-∠ACB=180°-67°-67°=46º.
    故选B.
    【点睛】
    本题考查等腰三角形的性质,平行线的性质,熟练根据这些性质得到角之间的关系是关键.
    5、B
    【解析】
    因为CP是∠OCD的平分线,所以∠DCP=∠OCP,所以∠DCP=∠OPC,则CD∥OP,所以弧AP等于弧BP,所以PA=PB.从而可得出答案.
    【详解】
    解:连接OP,
    ∵CP是∠OCD的平分线,
    ∴∠DCP=∠OCP,
    又∵OC=OP,
    ∴∠OCP=∠OPC,
    ∴∠DCP=∠OPC,
    ∴CD∥OP,
    又∵CD⊥AB,
    ∴OP⊥AB,
    ∴,
    ∴PA=PB.
    ∴点P是线段AB垂直平分线和圆的交点,
    ∴当C在⊙O上运动时,点P不动.
    故选:B.
    【点睛】
    本题考查了圆心角、弦、弧之间的关系,以及平行线的判定和性质,在同圆或等圆中,等弧对等弦.
    6、D
    【解析】
    设这个数是a,把x=1代入方程得出一个关于a的方程,求出方程的解即可.
    【详解】
    设这个数是a,
    把x=1代入得:(-2+1)=1-,
    ∴1=1-,
    解得:a=1.
    故选:D.
    【点睛】
    本题主要考查对解一元一次方程,等式的性质,一元一次方程的解等知识点的理解和掌握,能得出一个关于a的方程是解此题的关键.
    7、D
    【解析】
    根据轴对称图形的概念求解.
    【详解】
    解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形.
    故选D.
    【点睛】
    本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形
    8、A
    【解析】
    判断根的情况,只要看根的判别式△=b2−4ac的值的符号就可以了.
    【详解】
    ∵一次函数y=kx+b的图像经过第一、三、四象限
    ∴k>0, b<0
    ∴△=b2−4ac=(-2)2-4(kb+1)=-4kb>0,
    ∴方程x2﹣2x+kb+1=0有两个不等的实数根,故选A.
    【点睛】
    根的判别式
    9、A
    【解析】
    此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.
    【详解】
    解:①以点A为停靠点,则所有人的路程的和=15×100+10×300=1(米),
    ②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),
    ③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),
    ④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,
    ⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>1.
    ∴该停靠点的位置应设在点A;
    故选A.
    【点睛】
    此题为数学知识的应用,考查知识点为两点之间线段最短.
    10、B
    【解析】
    由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.
    【详解】
    ∵AB=CD,
    ∴AC+BC=BC+BD,
    即AC=BD,
    又∵BC=2AC,
    ∴BC=2BD,
    ∴CD=3BD=3AC.
    故选B.
    【点睛】
    本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.
    二、填空题(共7小题,每小题3分,满分21分)
    11、2
    【解析】
    根据若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1计算
    即可.
    【详解】
    解:依题意得:2﹣x=1且2x+2≠1.
    解得x=2,
    故答案为2.
    【点睛】
    本题考查的是分式为1的条件和一元二次方程的解法,掌握若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1是解题的关键.
    12、1
    【解析】
    【分析】根据根与系数的关系结合x1+x2=x1•x2可得出关于k的一元二次方程,解之即可得出k的值,再根据方程有实数根结合根的判别式即可得出关于k的一元二次不等式,解之即可得出k的取值范围,从而可确定k的值.
    【详解】∵x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,
    ∴x1+x2=2k,x1•x2=k2﹣k,
    ∵x12+x22=1,
    ∴(x1+x2)2-2x1x2=1,
    (2k)2﹣2(k2﹣k)=1,
    2k2+2k﹣1=0,
    k2+k﹣2=0,
    k=﹣2或1,
    ∵△=(﹣2k)2﹣1×1×(k2﹣k)≥0,
    k≥0,
    ∴k=1,
    ∴x1•x2=k2﹣k=0,
    ∴x12﹣x1x2+x22=1﹣0=1,
    故答案为:1.
    【点睛】本题考查了根的判别式以及根与系数的关系,熟练掌握“当一元二次方程有实数根时,根的判别式△≥0”是解题的关键.
    13、1
    【解析】
    作BD⊥AC于点D,在直角△ABD中,利用三角函数求得BD的长,然后在直角△BCD中,利用三角函数即可求得BC的长.
    【详解】
    ∠CBA=25°+50°=75°,
    作BD⊥AC于点D,
    则∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,
    ∠ABD=30°,
    ∴∠CBD=75°﹣30°=45°,
    在直角△ABD中,BD=AB•sin∠CAB=20×sin60°=20×=10,
    在直角△BCD中,∠CBD=45°,
    则BC=BD=10×=10≈10×2.4=1(海里),
    故答案是:1.
    【点睛】
    本题考查了解直角三角形的应用——方向角问题,正确求得∠CBD以及∠CAB的度数是解决本题的关键.
    14、
    【解析】
    试题分析:如图,过点C作CF⊥AD交AD的延长线于点F,可得BE∥CF,易证△BGD≌△CFD,所以GD=DF,BG=CF;又因BE是△ABC的角平分线且AD⊥BE,BG是公共边,可证得△ABG≌△DBG,所以AG=GD=3;由BE∥CF可得△AGE∽△AFC,所以,即FC=3GE;又因BE=BG+GE=3GE+GE=4GE=6,所以GE=,BG=;在Rt△AFC中,AF=AG+GD+GF=9,CF=BG=,由勾股定理可求得AC=.
    考点:全等三角形的判定及性质;相似三角形的判定及性质;勾股定理.
    15、-1
    【解析】
    利用题中的新定义计算即可求出值.
    【详解】
    解:根据题中的新定义得:原式=*(﹣1)=3*(﹣1)==﹣1.
    故答案为﹣1.
    【点睛】
    本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.
    16、直角三角形.
    【解析】
    根据题意,画出图形,用垂直平分线的性质解答.
    【详解】
    点O落在AB边上,
    连接CO,
    ∵OD是AC的垂直平分线,
    ∴OC=OA,
    同理OC=OB,
    ∴OA=OB=OC,
    ∴A、B、C都落在以O为圆心,以AB为直径的圆周上,
    ∴∠C是直角.
    ∴这个三角形是直角三角形.
    【点睛】
    本题考查线段垂直平分线的性质,解题关键是准确画出图形,进行推理证明.
    17、
    【解析】
    【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,.
    【详解】直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),
    以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,
    OA2==4,点A2的坐标为(4,0),
    这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)
    以此类推便可求出点A2019的坐标为(22019,0),
    则的长是,
    故答案为:.
    【点睛】本题主要考查了一次函数图象上点的坐标特征,弧长的计算,解题的关键找出点的坐标的变化规律、运用数形结合思想进行解题.
    三、解答题(共7小题,满分69分)
    18、原式=.
    ∵m是方程的根.∴,即,∴原式=.
    【解析】
    试题分析:先通分计算括号里的,再计算括号外的,化为最简,由于m是方程的根,那么,可得的值,再把的值整体代入化简后的式子,计算即可.
    试题解析:原式=.
    ∵m是方程的根.∴,即,∴原式=.
    考点:分式的化简求值;一元二次方程的解.
    19、(1)详见解析;(2)OA=.
    【解析】
    (1)连接OB,证明∠ABE=∠ADB,可得∠ABE=∠BDC,则∠ADB=∠BDC;
    (2)证明△AEB∽△CBD,AB=x,则BD=2x,可求出AB,则答案可求出.
    【详解】
    (1)证明:连接OB,
    ∵BE为⊙O的切线,
    ∴OB⊥BE,
    ∴∠OBE=90°,
    ∴∠ABE+∠OBA=90°,
    ∵OA=OB,
    ∴∠OBA=∠OAB,
    ∴∠ABE+∠OAB=90°,
    ∵AD是⊙O的直径,
    ∴∠OAB+∠ADB=90°,
    ∴∠ABE=∠ADB,
    ∵四边形ABCD的外接圆为⊙O,
    ∴∠EAB=∠C,
    ∵∠E=∠DBC,
    ∴∠ABE=∠BDC,
    ∴∠ADB=∠BDC,
    即DB平分∠ADC;
    (2)解:∵tan∠ABE=,
    ∴设AB=x,则BD=2x,
    ∴,
    ∵∠BAE=∠C,∠ABE=∠BDC,
    ∴△AEB∽△CBD,
    ∴,
    ∴,
    解得x=3,
    ∴AB=x=15,
    ∴OA=.
    【点睛】
    本题考查切线的性质、解直角三角形、勾股定理等知识,解题的关键是学会添加常用辅助线解决问题.
    20、(1)证明见解析;(2)
    【解析】
    试题分析:(1)过点O作OG⊥DC,垂足为G.先证明∠OAD=90°,从而得到∠OAD=∠OGD=90°,然后利用AAS可证明△ADO≌△GDO,则OA=OG=r,则DC是⊙O的切线;
    (2)连接OF,依据垂径定理可知BE=EF=1,在Rt△OEF中,依据勾股定理可知求得OF=13,然后可得到AE的长,最后在Rt△ABE中,利用锐角三角函数的定义求解即可.
    试题解析:
    (1)证明:
    过点O作OG⊥DC,垂足为G.
    ∵AD∥BC,AE⊥BC于E,
    ∴OA⊥AD.
    ∴∠OAD=∠OGD=90°.
    在△ADO和△GDO中

    ∴△ADO≌△GDO.
    ∴OA=OG.
    ∴DC是⊙O的切线.
    (2)如图所示:连接OF.
    ∵OA⊥BC,
    ∴BE=EF= BF=1.
    在Rt△OEF中,OE=5,EF=1,
    ∴OF=,
    ∴AE=OA+OE=13+5=2.
    ∴tan∠ABC=.
    【点睛】本题主要考查的是切线的判定、垂径定理、勾股定理的应用、锐角三角函数的定义,掌握本题的辅助线的作法是解题的关键.
    21、(1)4+;(2).
    【解析】
    (1)根据幂的乘方、零指数幂、特殊角的三角函数值和绝对值可以解答本题;
    (3)根据分式的减法和除法可以解答本题.
    【详解】
    (1)
    =4+1+|1﹣2×|
    =4+1+|1﹣|
    =4+1+﹣1
    =4+;
    (2)
    =
    =
    =.
    【点睛】
    本题考查分式的混合运算、实数的运算、零指数幂、特殊角的三角函数值和绝对值,解答本题的关键是明确它们各自的计算方法.
    22、(1)证明见解析;(2)阴影部分面积为
    【解析】
    【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线;
    (2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分别计算△OAC的面积以及扇形OAC的面积即可求出阴影部分面积.
    【详解】(1)如图,连接OC,
    ∵OA=OC,
    ∴∠BAC=∠OCA,
    ∵∠BCD=∠BAC,
    ∴∠BCD=∠OCA,
    ∵AB是直径,
    ∴∠ACB=90°,
    ∴∠OCA+OCB=∠BCD+∠OCB=90°
    ∴∠OCD=90°
    ∵OC是半径,
    ∴CD是⊙O的切线
    (2)设⊙O的半径为r,
    ∴AB=2r,
    ∵∠D=30°,∠OCD=90°,
    ∴OD=2r,∠COB=60°
    ∴r+2=2r,
    ∴r=2,∠AOC=120°
    ∴BC=2,
    ∴由勾股定理可知:AC=2,
    易求S△AOC=×2×1=
    S扇形OAC=,
    ∴阴影部分面积为.
    【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.
    23、(1)y=﹣x2+x﹣2;(2)当t=2时,△DAC面积最大为4;(3)符合条件的点P为(2,1)或(5,﹣2)或(﹣3,﹣14).
    【解析】
    (1)把A与B坐标代入解析式求出a与b的值,即可确定出解析式;(2)如图所示,过D作DE与y轴平行,三角形ACD面积等于DE与OA乘积的一半,表示出S与t的二次函数解析式,利用二次函数性质求出S的最大值即可;(3)存在P点,使得以A,P,M为顶点的三角形与△OAC相似,分当1<m<4时;当m<1时;当m>4时三种情况求出点P坐标即可.
    【详解】
    (1)∵该抛物线过点A(4,0),B(1,0),
    ∴将A与B代入解析式得:,解得:,
    则此抛物线的解析式为y=﹣x2+x﹣2;
    (2)如图,设D点的横坐标为t(0<t<4),则D点的纵坐标为﹣t2+t﹣2,
    过D作y轴的平行线交AC于E,
    由题意可求得直线AC的解析式为y=x﹣2,
    ∴E点的坐标为(t,t﹣2),
    ∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,
    ∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,
    则当t=2时,△DAC面积最大为4;
    (3)存在,如图,
    设P点的横坐标为m,则P点的纵坐标为﹣m2+m﹣2,
    当1<m<4时,AM=4﹣m,PM=﹣m2+m﹣2,
    又∵∠COA=∠PMA=90°,
    ∴①当==2时,△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),
    解得:m=2或m=4(舍去),
    此时P(2,1);
    ②当==时,△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,
    解得:m=4或m=5(均不合题意,舍去)
    ∴当1<m<4时,P(2,1);
    类似地可求出当m>4时,P(5,﹣2);
    当m<1时,P(﹣3,﹣14),
    综上所述,符合条件的点P为(2,1)或(5,﹣2)或(﹣3,﹣14).
    【点睛】
    本题综合考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里求三角形的面积及其最大值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,解决相似三角形问题时要注意分类讨论.
    24、 (1);(2)
    【解析】
    1)由题意可得共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,则可利用概率公式求解即可求得答案;
    (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式求解即可求得答案.
    【详解】
    解:(1)∵甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,确定甲打第一场,再从其余的三位同学中随机选取一位,∴恰好选到丙的概率是: ;
    (2)画树状图得:
    ∵共有12种等可能的结果,恰好选中甲、乙两人的有2种情况,
    ∴恰好选中甲、乙两人的概率为:
    【点睛】
    此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
    相关试卷

    河北省沧州市献县市级名校2021-2022学年中考数学模拟试题含解析: 这是一份河北省沧州市献县市级名校2021-2022学年中考数学模拟试题含解析,共15页。试卷主要包含了﹣2018的相反数是等内容,欢迎下载使用。

    广东省深圳市星火教育市级名校2021-2022学年中考数学模拟试题含解析: 这是一份广东省深圳市星火教育市级名校2021-2022学年中考数学模拟试题含解析,共22页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    2022年乐山市沙湾区市级名校中考三模数学试题含解析: 这是一份2022年乐山市沙湾区市级名校中考三模数学试题含解析,共19页。试卷主要包含了-sin60°的倒数为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map