终身会员
搜索
    上传资料 赚现金
    2021-2022学年内蒙古赤峰二中学中考数学考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    2021-2022学年内蒙古赤峰二中学中考数学考试模拟冲刺卷含解析01
    2021-2022学年内蒙古赤峰二中学中考数学考试模拟冲刺卷含解析02
    2021-2022学年内蒙古赤峰二中学中考数学考试模拟冲刺卷含解析03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年内蒙古赤峰二中学中考数学考试模拟冲刺卷含解析

    展开
    这是一份2021-2022学年内蒙古赤峰二中学中考数学考试模拟冲刺卷含解析,共27页。试卷主要包含了4的平方根是,下列调查中适宜采用抽样方式的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )
    A.16个 B.15个 C.13个 D.12个
    2.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形,转动这个四边形,使它形状改变,当,时,等于( )

    A. B. C. D.
    3.下列运算正确的是( )
    A.a3•a2=a6 B.(2a)3=6a3
    C.(a﹣b)2=a2﹣b2 D.3a2﹣a2=2a2
    4.下列说法中不正确的是(  )
    A.全等三角形的周长相等 B.全等三角形的面积相等
    C.全等三角形能重合 D.全等三角形一定是等边三角形
    5.已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是(  )
    A.x1+x2=1 B.x1•x2=﹣1 C.|x1|<|x2| D.x12+x1=
    6.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是米/秒,则所列方程正确的是( )
    A. B.
    C. D.
    7.如图,中,E是BC的中点,设,那么向量用向量表示为( )

    A. B. C. D.
    8.4的平方根是( )
    A.4 B.±4 C.±2 D.2
    9.下列调查中适宜采用抽样方式的是(  )
    A.了解某班每个学生家庭用电数量 B.调查你所在学校数学教师的年龄状况
    C.调查神舟飞船各零件的质量 D.调查一批显像管的使用寿命
    10.若关于 x 的一元一次不等式组 无解,则 a 的取值范围是( )
    A.a≥3 B.a>3 C.a≤3 D.a<3
    11.-4的绝对值是( )
    A.4 B. C.-4 D.
    12.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是(  )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.北京奥运会国家体育场“鸟巢”的建筑面积为258000平方米,那么258000用科学记数法可表示为 .
    14.菱形ABCD中,∠A=60°,AB=9,点P是菱形ABCD内一点,PB=PD=3,则AP的长为_____.
    15.已知:=,则的值是______.
    16.某文化用品商店计划同时购进一批A、B两种型号的计算器,若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元.则A型号的计算器的每只进价为_____元.
    17.与直线平行的直线可以是__________(写出一个即可).
    18.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于______.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.
    求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.
    20.(6分)如图1,在四边形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中点,P是AB上的任意一点,连接PE,将PE绕点P逆时针旋转90°得到PQ.
    (1)如图2,过A点,D点作BC的垂线,垂足分别为M,N,求sinB的值;
    (2)若P是AB的中点,求点E所经过的路径弧EQ的长(结果保留π);
    (3)若点Q落在AB或AD边所在直线上,请直接写出BP的长.

    21.(6分)如图1,已知抛物线y=﹣x2+x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.
    (1)求线段DE的长度;
    (2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少;
    (3)在(2)问的条件下,将得到的△CFP沿直线AE平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x轴交于点K,则是否存在这样的点K,使得△F′F″K为等腰三角形?若存在求出OK的值;若不存在,说明理由.

    22.(8分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C.求双曲线解析式;点P在x轴上,如果△ACP的面积为5,求点P的坐标.

    23.(8分)(1)|﹣2|+•tan30°+(2018﹣π)0-()-1
    (2)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.
    24.(10分)雾霾天气严重影响市民的生活质量。在今年寒假期间,某校九年级一班的综合实践小组学生对“雾霾天气的主要成因”随机调查了所在城市部分市民,并对调查结果进行了整理,绘制了下图所示的不完整的统计图表:
    组别
    雾霾天气的主要成因
    百分比
    A
    工业污染
    45%
    B
    汽车尾气排放

    C
    炉烟气排放
    15%
    D
    其他(滥砍滥伐等)


    请根据统计图表回答下列问题:本次被调查的市民共有多少人?并求和的值;请补全条形统计图,并计算扇形统计图中扇形区域所对应的圆心角的度数;若该市有100万人口,请估计市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数.
    25.(10分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.求该抛物线的表达式;点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.
    ①当点P在直线BC的下方运动时,求△PBC的面积的最大值;
    ②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.

    26.(12分)全民健身运动已成为一种时尚 ,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:
    A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.
    以下是根据调查结果绘制的统计图表的一部分,
    运动形式
    A
    B
    C
    D
    E
    人数





    请你根据以上信息,回答下列问题:
    接受问卷调查的共有 人,图表中的 , .
    统计图中,类所对应的扇形的圆心角的度数是 度.

    揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有人,请你估计一下该社区参加环岛路“暴走团”的人数.
    27.(12分)如图,在锐角△ABC中,小明进行了如下的尺规作图:
    ①分别以点A、B为圆心,以大于AB的长为半径作弧,两弧分别相交于点P、Q;
    ②作直线PQ分别交边AB、BC于点E、D.小明所求作的直线DE是线段AB的   ;联结AD,AD=7,sin∠DAC=,BC=9,求AC的长.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.
    【详解】
    解:设白球个数为:x个,
    ∵摸到红色球的频率稳定在25%左右,
    ∴口袋中得到红色球的概率为25%,
    ∴ ,
    解得:x=12,
    经检验x=12是原方程的根,
    故白球的个数为12个.
    故选:D.
    【点睛】
    本题考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题的关键.
    2、B
    【解析】
    首先连接AC,由将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=1,,易得△ABC是等边三角形,即可得到答案.
    【详解】
    连接AC,
    ∵将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,
    ∴AB=BC,
    ∵,
    ∴△ABC是等边三角形,
    ∴AC=AB=1.
    故选:B.

    【点睛】
    本题考点:菱形的性质.
    3、D
    【解析】
    试题分析:根据同底数幂相乘,底数不变指数相加求解求解;
    根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘求解;
    根据完全平方公式求解;
    根据合并同类项法则求解.
    解:A、a3•a2=a3+2=a5,故A错误;
    B、(2a)3=8a3,故B错误;
    C、(a﹣b)2=a2﹣2ab+b2,故C错误;
    D、3a2﹣a2=2a2,故D正确.
    故选D.
    点评:本题考查了完全平方公式,合并同类项法则,同底数幂的乘法,积的乘方的性质,熟记性质与公式并理清指数的变化是解题的关键.
    4、D
    【解析】
    根据全等三角形的性质可知A,B,C命题均正确,故选项均错误;
    D.错误,全等三角也可能是直角三角,故选项正确.
    故选D.
    【点睛】
    本题考查全等三角形的性质,两三角形全等,其对应边和对应角都相等.
    5、D
    【解析】
    【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.
    【详解】根据题意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B选项错误;
    ∵x1+x2<0,x1x2<0,
    ∴x1、x2异号,且负数的绝对值大,故C选项错误;
    ∵x1为一元二次方程2x2+2x﹣1=0的根,
    ∴2x12+2x1﹣1=0,
    ∴x12+x1=,故D选项正确,
    故选D.
    【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.
    6、C
    【解析】
    先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.
    【详解】
    小进跑800米用的时间为秒,小俊跑800米用的时间为秒,
    ∵小进比小俊少用了40秒,
    方程是,
    故选C.
    【点睛】
    本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.
    7、A
    【解析】
    根据,只要求出即可解决问题.
    【详解】
    解:四边形ABCD是平行四边形,






    故选:A.
    【点睛】
    本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.
    8、C
    【解析】
    根据平方根的定义,求数a的平方根,也就是求一个数x,使得x1=a,则x就是a的平方根,由此即可解决问题.
    【详解】
    ∵(±1)1=4,
    ∴4的平方根是±1.
    故选D.
    【点睛】
    本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
    9、D
    【解析】
    根据全面调查与抽样调查的特点对各选项进行判断.
    【详解】
    解:了解某班每个学生家庭用电数量可采用全面调查;调查你所在学校数学教师的年龄状况可采用全面调查;调查神舟飞船各零件的质量要采用全面调查;而调查一批显像管的使用寿命要采用抽样调查.
    故选:D.
    【点睛】
    本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.
    10、A
    【解析】
    先求出各不等式的解集,再与已知解集相比较求出 a 的取值范围.
    【详解】
    由 x﹣a>0 得,x>a;由 1x﹣1<2(x+1)得,x<1,
    ∵此不等式组的解集是空集,
    ∴a≥1.
    故选:A.
    【点睛】
    考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    11、A
    【解析】
    根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)
    【详解】
    根据绝对值的概念可得-4的绝对值为4.
    【点睛】
    错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.
    12、C
    【解析】
    分析:本题需要分两种情况来进行计算得出函数解析式,即当点N和点D重合之前以及点M和点B重合之前,根据题意得出函数解析式.
    详解:假设当∠A=45°时,AD=2,AB=4,则MN=t,当0≤t≤2时,AM=MN=t,则S=,为二次函数;当2≤t≤4时,S=t,为一次函数,故选C.
    点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、2.58×1
    【解析】
    科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.258 000=2.58×1.
    14、3或6
    【解析】
    分成P在OA上和P在OC上两种情况进行讨论,根据△ABD是等边三角形,即可求得OA的长度,在直角△OBP中利用勾股定理求得OP的长,则AP即可求得.
    【详解】
    设AC和BE相交于点O.

    当P在OA上时,
    ∵AB=AD,∠A=60°,
    ∴△ABD是等边三角形,
    ∴BD=AB=9,OB=OD=BD=.
    则AO=.
    在直角△OBP中,OP=.
    则AP=OA-OP-;
    当P在OC上时,AP=OA+OP=.
    故答案是:3或6.
    【点睛】
    本题考查了菱形的性质,注意到P在AC上,应分两种情况进行讨论是解题的关键.
    15、–
    【解析】
    根据已知等式设a=2k,b=3k,代入式子可求出答案.
    【详解】
    解:由,可设a=2k,b=3k,(k≠0),
    故:,
    故答案:.
    【点睛】
    此题主要考查比例的性质,a、b都用k表示是解题的关键.
    16、40
    【解析】
    设A型号的计算器的每只进价为x元,B型号的计算器的每只进价为y元,根据“若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.
    【详解】
    设A型号的计算器的每只进价为x元,B型号的计算器的每只进价为y元,
    根据题意得:,
    解得:.
    答:A型号的计算器的每只进价为40元.
    【点睛】
    本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
    17、y=-2x+5(答案不唯一)
    【解析】
    根据两条直线平行的条件:k相等,b不相等解答即可.
    【详解】
    解:如y=2x+1(只要k=2,b≠0即可,答案不唯一).
    故答案为y=2x+1.(提示:满足的形式,且)
    【点睛】
    本题考查了两条直线相交或平行问题.直线y=kx+b,(k≠0,且k,b为常数),当k相同,且b不相等,图象平行;当k不同,且b相等,图象相交;当k,b都相同时,两条直线重合.
    18、
    【解析】
    此题考查了二次函数的最值,勾股定理,等腰三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.
    【详解】
    过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE= ,设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出= ,代入求出BF和CM,相加即可求出答案.
    过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,
    ∵BF⊥OA,DE⊥OA,CM⊥OA,
    ∴BF∥DE∥CM.
    ∵OD=AD=3,DE⊥OA,
    ∴OE=EA= OA=2,
    由勾股定理得:DE= =5,设P(2x,0),根据二次函数的对称性得出OF=PF=x,
    ∵BF∥DE∥CM,
    ∴△OBF∽△ODE,△ACM∽△ADE,
    ∴,
    ∵AM=PM= (OA-OP)= (4-2x)=2-x,
    即,
    解得:
    ∴BF+CM= .

    故答案为.
    【点睛】
    考核知识点:二次函数综合题.熟记性质,数形结合是关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析;(2).
    【解析】
    (1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.
    (2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.
    【详解】
    解:(1)证明:连接OD,

    ∵∠ACD=60°,
    ∴由圆周角定理得:∠AOD=2∠ACD=120°.
    ∴∠DOP=180°﹣120°=60°.
    ∵∠APD=30°,
    ∴∠ODP=180°﹣30°﹣60°=90°.
    ∴OD⊥DP.
    ∵OD为半径,
    ∴DP是⊙O切线.
    (2)∵∠ODP=90°,∠P=30°,OD=3cm,
    ∴OP=6cm,由勾股定理得:DP=3cm.
    ∴图中阴影部分的面积
    20、(1) ;(2)5π;(3)PB的值为或.
    【解析】
    (1)如图1中,作AM⊥CB用M,DN⊥BC于N,根据题意易证Rt△ABM≌Rt△DCN,再根据全等三角形的性质可得出对应边相等,根据勾股定理可求出AM的值,即可得出结论;
    (2)连接AC,根据勾股定理求出AC的长,再根据弧长计算公式即可得出结论;
    (3)当点Q落在直线AB上时,根据相似三角形的性质可得对应边成比例,即可求出PB的值;当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G,设PB=x,则AP=13﹣x,再根据全等三角形的性质可得对应边相等,即可求出PB的值.
    【详解】
    解:(1)如图1中,作AM⊥CB用M,DN⊥BC于N.

    ∴∠DNM=∠AMN=90°,
    ∵AD∥BC,
    ∴∠DAM=∠AMN=∠DNM=90°,
    ∴四边形AMND是矩形,
    ∴AM=DN,
    ∵AB=CD=13,
    ∴Rt△ABM≌Rt△DCN,
    ∴BM=CN,
    ∵AD=11,BC=21,
    ∴BM=CN=5,
    ∴AM==12,
    在Rt△ABM中,sinB==.
    (2)如图2中,连接AC.

    在Rt△ACM中,AC===20,
    ∵PB=PA,BE=EC,
    ∴PE=AC=10,
    ∴的长==5π.
    (3)如图3中,当点Q落在直线AB上时,

    ∵△EPB∽△AMB,
    ∴==,
    ∴==,
    ∴PB=.
    如图4中,当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G.

    设PB=x,则AP=13﹣x.
    ∵AD∥BC,
    ∴∠B=∠HAP,
    ∴PG=x,PH=(13﹣x),
    ∴BG=x,
    ∵△PGE≌△QHP,
    ∴EG=PH,
    ∴﹣x=(13﹣x),
    ∴BP=.
    综上所述,满足条件的PB的值为或.
    【点睛】
    本题考查了相似三角形与全等三角形的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质.
    21、 (1)2 ;(2) ;(3)见解析.
    【解析】
    分析:(1)根据解析式求得C的坐标,进而求得D的坐标,即可求得DH的长度,令y=0,求得A,B的坐标,然后证得△ACO∽△EAH,根据对应边成比例求得EH的长,进继而求得DE的长;
    (2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(-2,-),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,根据点的坐标求得直线GN的解析式:y=x-;直线AE的解析式:y= -x-,过点M作y轴的平行线交FH于点Q,设点M(m,-m²+m+),则Q(m,m-),根据S△MFP=S△MQF+S△MQP,得出S△MFP= -m²+m+,根据解析式即可求得,△MPF面积的最大值;
    (3)由(2)可知C(0,),F(0,),P(2,),求得CF=,CP=,进而得出△CFP为等边三角形,边长为,翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,然后分三种情况讨论求得即可.
    本题解析:(1)对于抛物线y=﹣x2+x+,
    令x=0,得y=,即C(0,),D(2,),
    ∴DH=,
    令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,
    ∴A(﹣1,0),B(3,0),
    ∵AE⊥AC,EH⊥AH,
    ∴△ACO∽△EAH,
    ∴=,即=,
    解得:EH=,
    则DE=2;
    (2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),
    连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,
    直线GN的解析式:y=x﹣;直线AE的解析式:y=﹣x﹣,
    联立得:F (0,﹣),P(2,),
    过点M作y轴的平行线交FH于点Q,
    设点M(m,﹣m2+m+),则Q(m, m﹣),(0<m<2);
    ∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,
    ∵对称轴为:直线m=<2,开口向下,
    ∴m=时,△MPF面积有最大值: ;
    (3)由(2)可知C(0,),F(0,),P(2,),
    ∴CF=,CP==,
    ∵OC=,OA=1,
    ∴∠OCA=30°,
    ∵FC=FG,
    ∴∠OCA=∠FGA=30°,
    ∴∠CFP=60°,
    ∴△CFP为等边三角形,边长为,
    翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,
    1)当K F′=KF″时,如图3,
    点K在F′F″的垂直平分线上,所以K与B重合,坐标为(3,0),
    ∴OK=3;
    2)当F′F″=F′K时,如图4,
    ∴F′F″=F′K=4,
    ∵FP的解析式为:y=x﹣,
    ∴在平移过程中,F′K与x轴的夹角为30°,
    ∵∠OAF=30°,
    ∴F′K=F′A
    ∴AK=4
    ∴OK=4﹣1或者4+1;
    3)当F″F′=F″K时,如图5,

    ∵在平移过程中,F″F′始终与x轴夹角为60°,
    ∵∠OAF=30°,
    ∴∠AF′F″=90°,
    ∵F″F′=F″K=4,
    ∴AF″=8,
    ∴AK=12,
    ∴OK=1,
    综上所述:OK=3,4﹣1,4+1或者1.

    点睛:本题是二次函数的综合题,考查了二次函数的交点和待定系数法求二次函数的解析式以及最值问题,考查了三角形相似的判定与性质,等边三角形的判定与性质,等腰三角形的性质等,分类讨论的思想是解题的关键.
    22、(1);(2)(,0)或
    【解析】
    (1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;
    (2)设P(x,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于x的方程,解方程可求得P点的坐标.
    【详解】
    解:(1)把A(2,n)代入直线解析式得:n=3,
    ∴A(2,3),
    把A坐标代入y=,得k=6,
    则双曲线解析式为y=.
    (2)对于直线y=x+2,
    令y=0,得到x=-4,即C(-4,0).
    设P(x,0),可得PC=|x+4|.
    ∵△ACP面积为5,
    ∴|x+4|•3=5,即|x+4|=2,
    解得:x=-或x=-,
    则P坐标为或.
    23、(1)-1(1)-1
    【解析】
    (1)先根据根据绝对值的意义、立方根的意义、特殊角的三角函数值、零指数幂、负整数指数幂的意义化简,然后按照实数的运算法则计算即可;
    (1)把括号里通分,把的分子、分母分解因式约分,然后把除法转化为乘法计算;然后求出不等式组的整数解,选一个使分式有意义的值代入计算即可.
    【详解】
    (1)原式=1+3×+1﹣5
    =1++1﹣5
    =﹣1;
    (1)原式=
    =
    =
    =﹣,
    解不等式组得:-1≤x
    则不等式组的整数解为﹣1、0、1、1,
    ∵x(x+1)≠0且x﹣1≠0,
    ∴x≠0且x≠±1,
    ∴x=1,
    则原式=﹣=﹣1.
    【点睛】
    本题考查了实数的运算,分式的化简求值,不等式组的解法.熟练掌握各知识点是解答本题的关键,本题的易错点是容易忽视分式有意义的条件.
    24、(1)200人,;(2)见解析,;(3)75万人.
    【解析】
    (1)用A类的人数除以所占的百分比求出被调查的市民数,再用B类的人数除以总人数得出B类所占的百分比m,继而求出n的值即可;
    (2)求出C、D两组人数,从而可补全条形统计图,用360度乘以n即可得扇形区域所对应的圆心角的度数;
    (3)用该市的总人数乘以持有A、B两类所占的百分比的和即可.
    【详解】
    (1)本次被调查的市民共有:(人),
    ∴,;
    (2)组的人数是(人)、组的人数是(人),
    ∴;
    补全的条形统计图如下图所示:

    扇形区域所对应的圆心角的度数为:

    (3)(万),
    ∴若该市有100万人口,市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数约为75万人.
    【点睛】
    本题考查了条形统计图、扇形统计图、统计表,读懂图形,找出必要的信息是解题的关键.
    25、 (1)y=x2+6x+5;(2)①S△PBC的最大值为;②存在,点P的坐标为P(﹣,﹣)或(0,5).
    【解析】
    (1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;
    (2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;
    ②设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,求出 直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,、联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立⑤和y=x2+6x+5并解得:x=﹣,即可求出P点;当点P(P′)在直线BC上方时,根据∠PBC=∠BCD求出BP′∥CD,求出直线BP′的表达式为:y=2x+5,联立y=x2+6x+5和y=2x+5,求出x,即可求出P.
    【详解】
    解:(1)将点A、B坐标代入二次函数表达式得:,
    解得:,
    故抛物线的表达式为:y=x2+6x+5…①,
    令y=0,则x=﹣1或﹣5,
    即点C(﹣1,0);
    (2)①如图1,过点P作y轴的平行线交BC于点G,

    将点B、C的坐标代入一次函数表达式并解得:
    直线BC的表达式为:y=x+1…②,
    设点G(t,t+1),则点P(t,t2+6t+5),
    S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,
    ∵-<0,
    ∴S△PBC有最大值,当t=﹣时,其最大值为;
    ②设直线BP与CD交于点H,

    当点P在直线BC下方时,
    ∵∠PBC=∠BCD,
    ∴点H在BC的中垂线上,
    线段BC的中点坐标为(﹣,﹣),
    过该点与BC垂直的直线的k值为﹣1,
    设BC中垂线的表达式为:y=﹣x+m,将点(﹣,﹣)代入上式并解得:
    直线BC中垂线的表达式为:y=﹣x﹣4…③,
    同理直线CD的表达式为:y=2x+2…④,
    联立③④并解得:x=﹣2,即点H(﹣2,﹣2),
    同理可得直线BH的表达式为:y=x﹣1…⑤,
    联立①⑤并解得:x=﹣或﹣4(舍去﹣4),
    故点P(﹣,﹣);
    当点P(P′)在直线BC上方时,
    ∵∠PBC=∠BCD,∴BP′∥CD,
    则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,
    即直线BP′的表达式为:y=2x+5…⑥,
    联立①⑥并解得:x=0或﹣4(舍去﹣4),
    故点P(0,5);
    故点P的坐标为P(﹣,﹣)或(0,5).
    【点睛】
    本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.
    26、(1)150、45、36;(2)28.8°;(3)450人
    【解析】
    (1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;
    (2)360°乘以A项目人数占总人数的比例可得;
    (3)利用总人数乘以样本中C人数所占比例可得.
    【详解】
    解:(1)接受问卷调查的共有30÷20%=150人,m=150-(12+30+54+9)=45,
    ∴n=36,
    故答案为:150、45、36;
    (2)A类所对应的扇形圆心角的度数为
    故答案为:28.8°;
    (3)(人)
    答:估计该社区参加碧沙岗“暴走团”的大约有450人
    【点睛】
    本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
    27、(1)线段AB的垂直平分线(或中垂线);(2)AC=5.
    【解析】
    (1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线
    (2)根据题意垂直平分线定理可得AD=BD,得到CD=2,又因为已知sin∠DAC=,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长.
    【详解】
    (1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);
    故答案为线段AB的垂直平分线(或中垂线);
    (2)过点D作DF⊥AC,垂足为点F,如图,
    ∵DE是线段AB的垂直平分线,
    ∴AD=BD=7
    ∴CD=BC﹣BD=2,
    在Rt△ADF中,∵sin∠DAC=,
    ∴DF=1,
    在Rt△ADF中,AF=,
    在Rt△CDF中,CF=,
    ∴AC=AF+CF=.

    【点睛】
    本题考查了垂直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题.

    相关试卷

    内蒙古乌海市名校2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份内蒙古乌海市名校2021-2022学年中考数学考试模拟冲刺卷含解析,共28页。试卷主要包含了若等式,下列调查中,最适合采用全面调查等内容,欢迎下载使用。

    内蒙古巴彦淖尔市名校2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份内蒙古巴彦淖尔市名校2021-2022学年中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,若=1,则符合条件的m有等内容,欢迎下载使用。

    2022届内蒙古重点中学中考数学考试模拟冲刺卷含解析: 这是一份2022届内蒙古重点中学中考数学考试模拟冲刺卷含解析,共20页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map