


2021-2022学年辽宁省本溪市名校中考数学仿真试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.下列说法不正确的是( )
A.选举中,人们通常最关心的数据是众数
B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大
C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
D.数据3,5,4,1,﹣2的中位数是4
2.在△ABC中,∠C=90°,tanA=,△ABC的周长为60,那么△ABC的面积为( )
A.60 B.30 C.240 D.120
3.方程有两个实数根,则k的取值范围是( ).
A.k≥1 B.k≤1 C.k>1 D.k<1
4.下列计算正确的是( )
A.a3•a3=a9 B.(a+b)2=a2+b2 C.a2÷a2=0 D.(a2)3=a6
5.下列计算正确的是( )
A. B. C. D.
6.若=1,则符合条件的m有( )
A.1个 B.2个 C.3个 D.4个
7.不等式组的解集表示在数轴上正确的是( )
A. B. C. D.
8.估计的值在 ( )
A.4和5之间 B.5和6之间
C.6和7之间 D.7和8之间
9.的相反数是( )
A.2 B.﹣2 C.4 D.﹣
10.计算 的结果是( )
A.a2 B.-a2 C.a4 D.-a4
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若关于x的方程x2﹣8x+m=0有两个相等的实数根,则m=_____.
12.小明为了统计自己家的月平均用电量,做了如下记录并制成了表格,通过计算分析小明得出一个结论:小明家的月平均用电量为330千瓦时.请判断小明得到的结论是否合理并且说明理由______.
月份
六月
七月
八月
用电量(千瓦时)
290
340
360
月平均用电量(千瓦时)
330
13.若m+=3,则m2+=_____.
14.在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为26m,那么这根旗杆的高度为_____m.
15.如图,在中,CM平分交AB于点M,过点M作交AC于点N,且MN平分,若,则BC的长为______.
16.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第 象限.
三、解答题(共8题,共72分)
17.(8分)如图,的顶点是方格纸中的三个格点,请按要求完成下列作图,①仅用无刻度直尺,且不能用直尺中的直角;②保留作图痕迹.
在图1中画出边上的中线;在图2中画出,使得.
18.(8分)已知,如图所示直线y=kx+2(k≠0)与反比例函数y=(m≠0)分别交于点P,与y轴、x轴分别交于点A和点B,且cos∠ABO=,过P点作x轴的垂线交于点C,连接AC,
(1)求一次函数的解析式.
(2)若AC是△PCB的中线,求反比例函数的关系式.
19.(8分)学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练。王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的跳远成绩,将两次测得的成绩制作成图所示的统计图和不完整的统计表(满分10分,得分均为整数).
根据以上信息回答下列问题:训练后学生成绩统计表中,并补充完成下表:
若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?经调查,经过训练后得到9分的五名同学中,有三名男生和两名女生,王老师要从这五名同学中随机抽取两名同学写出训练报告,请用列表或画树状图的方法,求所抽取的两名同学恰好是一男一女的概率.
20.(8分)如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.
请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有 万人次;周日学生访问该网站有 万人次;周六到周日学生访问该网站的日平均增长率为 .
21.(8分)如图,AB是⊙O的直径,BE是弦,点D是弦BE上一点,连接OD并延长交⊙O于点C,连接BC,过点D作FD⊥OC交⊙O的切线EF于点F.
(1)求证:∠CBE=∠F;
(2)若⊙O的半径是2,点D是OC中点,∠CBE=15°,求线段EF的长.
22.(10分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球20个,B种品牌的足球30个,共花费4600元,已知购买4个B种品牌的足球与购买5个A种品牌的足球费用相同.
(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.
(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共42个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高5元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的80%,且保证这次购买的B种品牌足球不少于20个,则这次学校有哪几种购买方案?
(3)请你求出学校在第二次购买活动中最多需要多少资金?
23.(12分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).
请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?
24.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B
求证:△ADF∽△DEC;若AB=8,AD=6,AF=4,求AE的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
试题分析:A、选举中,人们通常最关心的数据为出现次数最多的数,所以A选项的说法正确;
B、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B选项的说法正确;
C、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,所以C选项的说法正确;
D、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D选项的说法错误.
故选D.
考点:随机事件发生的可能性(概率)的计算方法
2、D
【解析】
由tanA的值,利用锐角三角函数定义设出BC与AC,进而利用勾股定理表示出AB,由周长为60求出x的值,确定出两直角边,即可求出三角形面积.
【详解】
如图所示,
由tanA=,
设BC=12x,AC=5x,根据勾股定理得:AB=13x,
由题意得:12x+5x+13x=60,
解得:x=2,
∴BC=24,AC=10,
则△ABC面积为120,
故选D.
【点睛】
此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键.
3、D
【解析】
当k=1时,原方程不成立,故k≠1,
当k≠1时,方程为一元二次方程.
∵此方程有两个实数根,
∴,解得:k≤1.
综上k的取值范围是k<1.故选D.
4、D.
【解析】
试题分析:A、原式=a6,不符合题意;B、原式=a2+2ab+b2,不符合题意;
C、原式=1,不符合题意;D、原式=a6,符合题意,
故选D
考点:整式的混合运算
5、A
【解析】
原式各项计算得到结果,即可做出判断.
【详解】
A、原式=,正确;
B、原式不能合并,错误;
C、原式=,错误;
D、原式=2,错误.
故选A.
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
6、C
【解析】
根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m的等式,即可得出.
【详解】
=1
m2-9=0或m-2= 1
即m= 3或m=3,m=1
m有3个值
故答案选C.
【点睛】
本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.
7、C
【解析】
根据题意先解出的解集是,
把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;
表示时要注意方向向左,起始的标记为实心圆点,
综上所述C的表示符合这些条件.
故应选C.
8、C
【解析】
根据 ,可以估算出位于哪两个整数之间,从而可以解答本题.
【详解】
解:∵
即
故选:C.
【点睛】
本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法.
9、A
【解析】
分析:根据只有符号不同的两个数是互为相反数解答即可.
详解:的相反数是,即2.
故选A.
点睛:本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.
10、D
【解析】
直接利用同底数幂的乘法运算法则计算得出答案.
【详解】
解:,
故选D.
【点睛】
此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
根据判别式的意义得到△=(﹣8)2﹣4m=0,然后解关于m的方程即可.
【详解】
△=(﹣8)2﹣4m=0,
解得m=1,
故答案为:1.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
12、不合理,样本数据不具有代表性
【解析】
根据表中所取的样本不具有代表性即可得到结论.
【详解】
不合理,样本数据不具有代表性(例:夏季高峰用电量大不能代表年平均用电量).
故答案为:不合理,样本数据不具有代表性(例:夏季高峰用电量大不能代表年平均用电量).
【点睛】
本题考查了统计表,认真分析表中数据是解题的关键.
13、7
【解析】
分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.
详解:把m+=3两边平方得:(m+)2=m2++2=9,
则m2+=7,
故答案为:7
点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.
14、13
【解析】
根据同时同地物高与影长成比列式计算即可得解.
【详解】
解:设旗杆高度为x米,
由题意得,,
解得x=13.
故答案为13.
【点睛】
本题考查投影,解题的关键是应用相似三角形.
15、1
【解析】
根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.
【详解】
∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,
∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,
∴∠ACB=2∠B,NM=NC,
∴∠B=30°,
∵AN=1,
∴MN=2,
∴AC=AN+NC=3,
∴BC=1,
故答案为1.
【点睛】
本题考查含30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
16、一
【解析】
试题分析:首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.
∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内, ∴点M(k﹣1,k+1)位于第三象限,
∴k﹣1<0且k+1<0, 解得:k<﹣1,
∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限
考点:一次函数的性质
三、解答题(共8题,共72分)
17、(1)见解析;(2)见解析.
【解析】
(1)利用矩形的性质得出AB的中点,进而得出答案.
(2)利用矩形的性质得出AC、BC的中点,连接并延长,使延长线段与连接这两个中点的线段相等.
【详解】
(1)如图所示:CD即为所求.
(2)
【点睛】
本题考查应用设计与作图,正确借助矩形性质和网格分析是解题关键.
18、(2)y=2x+2;(2)y=.
【解析】
(2)由cos∠ABO=,可得到tan∠ABO=2,从而可得到k=2;
(2)先求得A、B的坐标,然后依据中点坐标公式可求得点P的坐标,将点P的坐标代入反比例函数的解析式可求得m的值.
【详解】
(2)∵cos∠ABO=,
∴tan∠ABO=2.又∵OA=2
∴OB=2.B(-2,0)代入y=kx+2得k=2
∴一次函数的解析式为y=2x+2.
(2)当x=0时,y=2,
∴A(0,2).
当y=0时,2x+2=0,解得:x=﹣2.
∴B(﹣2,0).
∵AC是△PCB的中线,
∴P(2,4).
∴m=xy=2×4=4,
∴反例函数的解析式为y=.
【点睛】
本题主要考查的是反比例函数与一次函数的交点、锐角三角函数的定义、中点坐标公式的应用,确定一次函数系数k=tan∠ABO是解题的关键.
19、(1),见解析;(2)125人;(3)
【解析】
(1)利用强化训练前后人数不变计算n的值;利用中位数对应计算强化训练前的中位数;利用平均数的计算方法计算强化训练后的平均分;利用众数的定义确定强化训练后的众数;
(2)用500分别乘以样本中训练前后优秀的人数的百分比,然后求差即可;
(3)画树状图展示所有20种等可能的结果数,再找出所抽取的两名同学恰好是一男一女的结果数,然后根据概率公式求解.
【详解】
(1)解:(1)n=20-1-3-8-5=3;
强化训练前的中位数,
强化训练后的平均分为(1×6+3×7+8×8+9×5+10×3)=8.3;
强化训练后的众数为8,
故答案为3;7.5;8.3;8;
(2)(人)
(3)(3)画树状图为:
共有20种等可能的结果数,其中所抽取的两名同学恰好是一男一女的结果数为12,
所以所抽取的两名同学恰好是一男一女的概率P=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.
20、(1)10;(2)0.9;(3)44%
【解析】
(1)把条形统计图中每天的访问量人数相加即可得出答案;
(2)由星期日的日访问总量为3万人次,结合扇形统计图可得星期日学生日访问总量占日访问总量的百分比为30%,继而求得星期日学生日访问总量;
(3)根据增长率的算数列出算式,再进行计算即可.
【详解】
(1)这一周该网站访问总量为:0.5+1+0.5+1+1.5+2.5+3=10(万人次);
故答案为10;
(2)∵星期日的日访问总量为3万人次,星期日学生日访问总量占日访问总量的百分比为30%,
∴星期日学生日访问总量为:3×30%=0.9(万人次);
故答案为0.9;
(3)周六到周日学生访问该网站的日平均增长率为:=44%;
故答案为44%.
考点:折线统计图;条形统计图
21、(1)详见解析;(1)
【解析】
(1)连接OE交DF于点H,由切线的性质得出∠F+∠EHF =90∘,由FD⊥OC得出∠DOH+∠DHO =90∘,依据对顶角的定义得出∠EHF=∠DHO,从而求得∠F=∠DOH,依据∠CBE=∠DOH,从而即可得证;
(1)依据圆周角定理及其推论得出∠F=∠COE=1∠CBE =30°,求出OD的值,利用锐角三角函数的定义求出OH的值,进一步求得HE的值,利用锐角三角函数的定义进一步求得EF的值.
【详解】
(1)证明:连接OE交DF于点H,
∵EF是⊙O的切线,OE是⊙O的半径,
∴OE⊥EF.
∴∠F+∠EHF=90°.
∵FD⊥OC,
∴∠DOH+∠DHO=90°.
∵∠EHF=∠DHO,
∴∠F=∠DOH.
∵∠CBE=∠DOH,
∴
(1)解:∵∠CBE=15°,
∴∠F=∠COE=1∠CBE=30°.
∵⊙O的半径是,点D是OC中点,
∴.
在Rt△ODH中,cos∠DOH=,
∴OH=1.
∴.
在Rt△FEH中,
∴
【点睛】
本题主要考查切线的性质及直角三角形的性质、圆周角定理及三角函数的应用,掌握圆周角定理和切线的性质是解题的关键.
22、(1)购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元;(2)有三种方案,具体见解析;(3)3150元.
【解析】
试题分析:(1)、设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据题意列出二元一次方程组,从而求出x和y的值得出答案;(2)、设第二次购买A种足球m个,则购买B种足球(50-m)个,根据题意列出不等式组求出m的取值范围,从而得出答案;(3)、分别求出第二次购买时足球的单件,然后得出答案.
试题解析:(1) 设A种品牌足球的单价为x元,B种品牌足球的单价为y元
,解得
(2) 设第二次购买A种足球m个,则购买B种足球(50-m)个
,解得25≤m≤27
∵m为整数 ∴m=25、26、27
(3) ∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72
∴当购买B种足球越多时,费用越高 此时25×54+25×72=3150(元)
23、(1)详见解析;(2)40%;(3)105;(4).
【解析】
(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;
(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;
(3)根据样本估计总体的方法计算即可;
(4)利用概率公式即可得出结论.
【详解】
(1)由条形图知,男生共有:10+20+13+9=52人,
∴女生人数为100-52=48人,
∴参加武术的女生为48-15-8-15=10人,
∴参加武术的人数为20+10=30人,
∴30÷100=30%,
参加器乐的人数为9+15=24人,
∴24÷100=24%,
补全条形统计图和扇形统计图如图所示:
(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是100%=40%.
答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.
(3)500×21%=105(人).
答:估计其中参加“书法”项目活动的有105人.
(4).
答:正好抽到参加“器乐”活动项目的女生的概率为.
【点睛】
此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
24、(1)见解析(2)6
【解析】
(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC.
(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在在Rt△ADE中,利用勾股定理求出线段AE的长度.
【详解】
解:(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC
∴∠C+∠B=110°,∠ADF=∠DEC
∵∠AFD+∠AFE=110°,∠AFE=∠B,
∴∠AFD=∠C
在△ADF与△DEC中,∵∠AFD=∠C,∠ADF=∠DEC,
∴△ADF∽△DEC
(2)∵四边形ABCD是平行四边形,
∴CD=AB=1.
由(1)知△ADF∽△DEC,
∴,
∴
在Rt△ADE中,由勾股定理得:
山东青岛重点名校2021-2022学年中考数学仿真试卷含解析: 这是一份山东青岛重点名校2021-2022学年中考数学仿真试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,如图,空心圆柱体的左视图是,下列命题正确的是等内容,欢迎下载使用。
山东广饶县重点名校2021-2022学年中考数学仿真试卷含解析: 这是一份山东广饶县重点名校2021-2022学年中考数学仿真试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,若=1,则符合条件的m有,下列各式计算正确的是,将抛物线绕着点,实数 的相反数是等内容,欢迎下载使用。
2021-2022学年辽宁省本溪市达标名校中考猜题数学试卷含解析: 这是一份2021-2022学年辽宁省本溪市达标名校中考猜题数学试卷含解析,共23页。