终身会员
搜索
    上传资料 赚现金
    2021-2022学年弥勒市朋普中学中考押题数学预测卷含解析
    立即下载
    加入资料篮
    2021-2022学年弥勒市朋普中学中考押题数学预测卷含解析01
    2021-2022学年弥勒市朋普中学中考押题数学预测卷含解析02
    2021-2022学年弥勒市朋普中学中考押题数学预测卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年弥勒市朋普中学中考押题数学预测卷含解析

    展开
    这是一份2021-2022学年弥勒市朋普中学中考押题数学预测卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,如果,下列计算正确的是,运用图形变化的方法研究下列问题,在中,,,下列结论中,正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.已知圆心在原点O,半径为5的⊙O,则点P(-3,4)与⊙O的位置关系是( )
    A.在⊙O内 B.在⊙O上
    C.在⊙O外 D.不能确定
    2.下列四个图形中既是轴对称图形,又是中心对称图形的是(  )
    A. B. C. D.
    3.将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为( )
    A.y=(x﹣2)2+3 B.y=(x﹣2)2﹣3 C.y=(x+2)2+3 D.y=(x+2)2﹣3
    4.已知二次函数的图象如图所示,则下列结论:①ac>0;②a-b+c<0; 当时,;,其中错误的结论有  
    A.②③ B.②④ C.①③ D.①④
    5.如果(,均为非零向量),那么下列结论错误的是(  )
    A.// B.-2=0 C.= D.
    6.下列计算正确的是(  )
    A.a2+a2=2a4 B.(﹣a2b)3=﹣a6b3 C.a2•a3=a6 D.a8÷a2=a4
    7.二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论正确的是(  )

    A.a<0 B.b2-4ac<0 C.当-10 D.-=1
    8.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将以DE为折痕向右折叠,AE与BC交于点F,则的面积为( )

    A.4 B.6 C.8 D.10
    9.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是(       )

    A. B. C. D.
    10.在中,,,下列结论中,正确的是( )
    A. B.
    C. D.
    11.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是(  )

    A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球
    B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数
    C.先后两次掷一枚质地均匀的硬币,两次都出现反面
    D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9
    12.某区10名学生参加市级汉字听写大赛,他们得分情况如上表:那么这10名学生所得分数的平均数和众数分别是( )
    人数
    3
    4
    2
    1
    分数
    80
    85
    90
    95
    A.85和82.5 B.85.5和85 C.85和85 D.85.5和80
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.点A(-2,1)在第_______象限.
    14.如果点P1(2,y1)、P2(3,y2) 在抛物线上,那么 y1 ______ y2.(填“>”,“<”或“=”).
    15.尺规作图:过直线外一点作已知直线的平行线.
    已知:如图,直线l与直线l外一点P.
    求作:过点P与直线l平行的直线.

    作法如下:
    (1)在直线l上任取两点A、B,连接AP、BP;
    (2)以点B为圆心,AP长为半径作弧,以点P为圆心,AB长为半径作弧,如图所示,两弧相交于点M;
    (3)过点P、M作直线;
    (4)直线PM即为所求.

    请回答:PM平行于l的依据是_____.
    16.阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1.根据该材料填空:已知=(2,3),=(4,m),且∥,则m=_____.
    17.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B,C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )


    18.计算的结果等于__________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)(1)计算:﹣22+|﹣4|+()-1+2tan60°
    (2) 求 不 等 式 组的 解 集 .
    20.(6分)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和-1;乙袋中有三个完全相同的小球,分别标有数字-1、0和1.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y).
    (1)请用表格或树状图列出点P所有可能的坐标;
    (1)求点P在一次函数y=x+1图象上的概率.
    21.(6分)如图所示,在中,,
    (1)用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)
    (2)连接AP当为多少度时,AP平分.

    22.(8分)我校春晚遴选男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去参加主持人精选。
    (1)选中的男主持人为甲班的频率是
    (2)选中的男女主持人均为甲班的概率是多少?(用树状图或列表)
    23.(8分)雾霾天气严重影响市民的生活质量。在今年寒假期间,某校九年级一班的综合实践小组学生对“雾霾天气的主要成因”随机调查了所在城市部分市民,并对调查结果进行了整理,绘制了下图所示的不完整的统计图表:
    组别
    雾霾天气的主要成因
    百分比
    A
    工业污染
    45%
    B
    汽车尾气排放

    C
    炉烟气排放
    15%
    D
    其他(滥砍滥伐等)


    请根据统计图表回答下列问题:本次被调查的市民共有多少人?并求和的值;请补全条形统计图,并计算扇形统计图中扇形区域所对应的圆心角的度数;若该市有100万人口,请估计市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数.
    24.(10分)如图 1 所示是一辆直臂高空升降车正在进行外墙装饰作业.图 2 是其工作示意图,AC是可以伸缩的起重臂,其转动点 A 离地面 BD 的高度 AH 为 2 m.当起重臂 AC 长度为 8 m,张角∠HAC 为 118°时,求操作平台 C 离地面的高度.(果保留小数点后一位,参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)

    25.(10分)已知关于x的一元二次方程.求证:方程有两个不相等的实数根;如果方程的两实根为,,且,求m的值.
    26.(12分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:
    该超市“元旦”期间共销售   个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是   度;补全条形统计图;如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?
    27.(12分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B.
    【解析】
    试题解析:∵OP=5,
    ∴根据点到圆心的距离等于半径,则知点在圆上.
    故选B.
    考点:1.点与圆的位置关系;2.坐标与图形性质.
    2、D
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A、是轴对称图形,不是中心对称图形,故此选项错误;
    B、是轴对称图形,不是中心对称图形,故此选项错误;
    C、是轴对称图形,不是中心对称图形,故此选项错误;
    D、是轴对称图形,也是中心对称图形,故此选项正确.
    故选D.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    3、D
    【解析】
    先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.
    【详解】
    解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.
    故选:D.
    【点睛】
    本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
    4、C
    【解析】
    ①根据图象的开口方向,可得a的范围,根据图象与y轴的交点,可得c的范围,根据有理数的乘法,可得答案;
    ②根据自变量为-1时函数值,可得答案;
    ③根据观察函数图象的纵坐标,可得答案;
    ④根据对称轴,整理可得答案.
    【详解】
    图象开口向下,得a<0,
    图象与y轴的交点在x轴的上方,得c>0,ac<,故①错误;
    ②由图象,得x=-1时,y<0,即a-b+c<0,故②正确;
    ③由图象,得
    图象与y轴的交点在x轴的上方,即当x<0时,y有大于零的部分,故③错误;
    ④由对称轴,得x=-=1,解得b=-2a,
    2a+b=0
    故④正确;
    故选D.
    【点睛】
    考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
    5、B
    【解析】
    试题解析:向量最后的差应该还是向量. 故错误.
    故选B.
    6、B
    【解析】
    解:A.a2+a2=2a2,故A错误;
    C、a2a3=a5,故C错误;
    D、a8÷a2=a6,故D错误;
    本题选B.
    考点:合同类型、同底数幂的乘法、同底数幂的除法、积的乘方
    7、D
    【解析】
    试题分析:根据二次函数的图象和性质进行判断即可.
    解:∵抛物线开口向上,

    ∴A选项错误,
    ∵抛物线与x轴有两个交点,

    ∴B选项错误,
    由图象可知,当-1 ∴C选项错误,
    由抛物线的轴对称性及与x轴的两个交点分别为(-1,0)和(3,0)可知对称轴为
    即-=1,
    ∴D选项正确,
    故选D.
    8、C
    【解析】
    根据折叠易得BD,AB长,利用相似可得BF长,也就求得了CF的长度,△CEF的面积=CF•CE.
    【详解】
    解:由折叠的性质知,第二个图中BD=AB-AD=4,第三个图中AB=AD-BD=2,
    因为BC∥DE,
    所以BF:DE=AB:AD,
    所以BF=2,CF=BC-BF=4,
    所以△CEF的面积=CF•CE=8;
    故选:C.
    点睛:
    本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②矩形的性质,平行线的性质,三角形的面积公式等知识点.
    9、A
    【解析】
    【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明S△OCD=S△ACD,S△OEF=S△AEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解.
    【详解】作直径CG,连接OD、OE、OF、DG.
    ∵CG是圆的直径,
    ∴∠CDG=90°,则DG==8,
    又∵EF=8,
    ∴DG=EF,
    ∴,
    ∴S扇形ODG=S扇形OEF,
    ∵AB∥CD∥EF,
    ∴S△OCD=S△ACD,S△OEF=S△AEF,
    ∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=π×52=,
    故选A.

    【点睛】本题考查扇形面积的计算,圆周角定理.本题中找出两个阴影部分面积之间的联系是解题的关键.
    10、C
    【解析】
    直接利用锐角三角函数关系分别计算得出答案.
    【详解】
    ∵,,
    ∴,
    ∴,
    故选项A,B错误,
    ∵,
    ∴,
    故选项C正确;选项D错误.
    故选C.

    【点睛】
    此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.
    11、D
    【解析】
    根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.
    【详解】
    解: 根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,
    A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,不符合题意;
    B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;
    C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;
    D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意,
    故选D.
    【点睛】
    本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.
    12、B
    【解析】
    根据众数及平均数的定义,即可得出答案.
    【详解】
    解:这组数据中85出现的次数最多,故众数是85;平均数= (80×3+85×4+90×2+95×1)=85.5.
    故选:B.
    【点睛】
    本题考查了众数及平均数的知识,掌握各部分的概念是解题关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、二
    【解析】
    根据点在第二象限的坐标特点解答即可.
    【详解】
    ∵点A的横坐标-2<0,纵坐标1>0,
    ∴点A在第二象限内.
    故答案为:二.
    【点睛】
    本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    14、>
    【解析】
    分析:首先求得抛物线y=﹣x2+2x的对称轴是x=1,利用二次函数的性质,点M、N在对称轴的右侧,y随着x的增大而减小,得出答案即可.
    详解:抛物线y=﹣x2+2x的对称轴是x=﹣=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y1>y2.
    故答案为>.
    点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题.
    15、两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.
    【解析】
    利用画法得到PM=AB,BM=PA,则利用平行四边形的判定方法判断四边形ABMP为平行四边形,然后根据2平行四边形的性质得到PM∥AB.
    【详解】
    解:由作法得PM=AB,BM=PA,
    ∴四边形ABMP为平行四边形,
    ∴PM∥AB.
    故答案为:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.
    【点睛】
    本题考查基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的判定与性质.
    16、6
    【解析】
    根据题意得,2m=3×4,解得m=6,故答案为6.
    17、C
    【解析】
    先证明△BPE∽△CDP,再根据相似三角形对应边成比例列出式子变形可得.
    【详解】
    由已知可知∠EPD=90°,
    ∴∠BPE+∠DPC=90°,
    ∵∠DPC+∠PDC=90°,
    ∴∠CDP=∠BPE,
    ∵∠B=∠C=90°,
    ∴△BPE∽△CDP,
    ∴BP:CD=BE:CP,即x:3=y:(5-x),
    ∴y=(0<x<5);
    故选C.
    考点:1.折叠问题;2.相似三角形的判定和性质;3.二次函数的图象.
    18、
    【解析】
    根据完全平方公式进行展开,然后再进行同类项合并即可.
    【详解】
    解:

    .
    故填.
    【点睛】
    主要考查的是完全平方公式及二次根式的混合运算,注意最终结果要化成最简二次根式的形式.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)1;(2)-1≤x<1.
    【解析】
    试题分析:(1)、首先根据绝对值、幂、三角函数的计算法则得出各式的值,然后进行求和得出答案;(2)、分半求出每个不等式的解,然后得出不等式组的解.
    试题解析:解:(1)、
    (2)、 由得:x<1,由得:x≥-1,∴不等式的解集:-1≤x<1.
    20、(1)见解析;(1).
    【解析】
    试题分析:(1)画出树状图(或列表),根据树状图(或表格)列出点P所有可能的坐标即可;(1)根据(1)的所有结果,计算出这些结果中点P在一次函数图像上的个数,即可求得点P在一次函数图像上的概率.
    试题解析:(1)画树状图:

    或列表如下:

    ∴点P所有可能的坐标为(1,-1),(1,0)(1,1)(-1,-1),(-1,0)(-1,1).
    ∵只有(1,1)与(-1,-1)这两个点在一次函数图像上,
    ∴P(点P在一次函数图像上)=.
    考点:用(树状图或列表法)求概率.
    21、(1)详见解析;(2)30°.
    【解析】
    (1)根据线段垂直平分线的作法作出AB的垂直平分线即可;
    (2)连接PA,根据等腰三角形的性质可得,由角平分线的定义可得,根据直角三角形两锐角互余的性质即可得∠B的度数,可得答案.
    【详解】
    (1)如图所示:分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点E、F,作直线EF,交BC于点P,
    ∵EF为AB的垂直平分线,
    ∴PA=PB,
    ∴点P即为所求.

    (2)如图,连接AP,
    ∵,
    ∴,
    ∵AP是角平分线,
    ∴,
    ∴,
    ∵,
    ∴∠PAC+∠PAB+∠B=90°,
    ∴3∠B=90°,
    解得:∠B=30°,
    ∴当时,AP平分.

    【点睛】
    本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.
    22、 (1) (2) ,图形见解析.
    【解析】
    (1)根据概率的定义即可求出;
    (2)先根据题意列出树状图,再利用概率公式进行求解.
    【详解】
    (1)由题意P(选中的男主持人为甲班)=
    (2)列出树状图如下
    ∴P(选中的男女主持人均为甲班的)=

    【点睛】
    此题主要考查概率的计算,解题的关键是根据题意列出树状图进行求解.
    23、(1)200人,;(2)见解析,;(3)75万人.
    【解析】
    (1)用A类的人数除以所占的百分比求出被调查的市民数,再用B类的人数除以总人数得出B类所占的百分比m,继而求出n的值即可;
    (2)求出C、D两组人数,从而可补全条形统计图,用360度乘以n即可得扇形区域所对应的圆心角的度数;
    (3)用该市的总人数乘以持有A、B两类所占的百分比的和即可.
    【详解】
    (1)本次被调查的市民共有:(人),
    ∴,;
    (2)组的人数是(人)、组的人数是(人),
    ∴;
    补全的条形统计图如下图所示:

    扇形区域所对应的圆心角的度数为:

    (3)(万),
    ∴若该市有100万人口,市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数约为75万人.
    【点睛】
    本题考查了条形统计图、扇形统计图、统计表,读懂图形,找出必要的信息是解题的关键.
    24、5.8
    【解析】
    过点作于点,过点作于点,易得四边形为矩形,则,再计算出,在中,利用正弦可计算出CF的长度,然后计算CF+EF即可.
    【详解】
    解:如图,过点作于点,过点作于点,


    又,

    ∴四边形为矩形.


    在中,



    答:操作平台离地面的高度约为.
    【点睛】
    本题考查了解直角三角形的应用,先将实际问题抽象为数学问题,然后利用勾股定理和锐角三角函数的定义进行计算.
    25、(1)证明见解析(1)1或1
    【解析】
    试题分析:(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;
    (1)根据根与系数的关系可以得到关于m的方程,从而可以求得m的值.
    试题解析:(1)证明:∵,∴△=[﹣(m﹣3)]1﹣4×1×(﹣m)=m1﹣1m+9=(m﹣1)1+8>0,∴方程有两个不相等的实数根;
    (1)∵,方程的两实根为,,且,∴ , ,∴,∴(m﹣3)1﹣3×(﹣m)=7,解得,m1=1,m1=1,即m的值是1或1.
    26、(1)2400,60;(2)见解析;(3)500
    【解析】
    整体分析:
    (1)由C品牌1200个占总数的50%可得鸡蛋的数量,用A品牌占总数的百分比乘以360°即可;(2)计算出B品牌的数量;(3)用B品牌与总数的比乘以1500.
    解:(1)共销售绿色鸡蛋:1200÷50%=2400个,
    A品牌所占的圆心角:×360°=60°;
    故答案为2400,60;
    (2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,
    补全统计图如图:

    (3)分店销售的B种品牌的绿色鸡蛋为:×1500=500个.
    27、 (1) ;(2).
    【解析】
    (1)直接利用概率公式求解;
    (2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.
    【详解】
    (1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;
    (2)画树状图为:

    共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.

    相关试卷

    弥勒市朋普中学2023-2024学年九上数学期末教学质量检测模拟试题含答案: 这是一份弥勒市朋普中学2023-2024学年九上数学期末教学质量检测模拟试题含答案,共7页。试卷主要包含了方程x2=2x的解是,若函数y=等内容,欢迎下载使用。

    2021-2022学年云南弥勒市中考数学押题卷含解析: 这是一份2021-2022学年云南弥勒市中考数学押题卷含解析,共21页。试卷主要包含了下列运算正确的是,的相反数是等内容,欢迎下载使用。

    2021-2022学年金华市重点中学中考押题数学预测卷含解析: 这是一份2021-2022学年金华市重点中学中考押题数学预测卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列各式计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map