2021-2022学年江苏省盐城市射阳外国语校中考数学对点突破模拟试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列运算正确的是( )
A.a3•a2=a6 B.(x3)3=x6 C.x5+x5=x10 D.﹣a8÷a4=﹣a4
2.若二次函数的图像与轴有两个交点,则实数的取值范围是( )
A. B. C. D.
3.将抛物线向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为( )
A. B.
C. D.
4.如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为( )
A.7 B.8 C.9 D.10
5.如图,正比例函数y=x与反比例函数的图象交于A(2,2)、B(﹣2,﹣2)两点,当y=x的函数值大于的函数值时,x的取值范围是( )
A.x>2 B.x<﹣2
C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2
6.的绝对值是( )
A.8 B.﹣8 C. D.﹣
7.计算﹣2+3的结果是( )
A.1 B.﹣1 C.﹣5 D.﹣6
8.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套,设用张铝片制作瓶身,则可列方程( )
A. B.
C. D.
9.若一组数据2,3,4,5,x的平均数与中位数相等,则实数x的值不可能是( )
A.6 B.3.5 C.2.5 D.1
10. “可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿用科学记数法可表示为( )
A.0.8×1011 B.8×1010 C.80×109 D.800×108
11.已知反比例函数,下列结论不正确的是( )
A.图象必经过点(﹣1,2) B.y随x的增大而增大
C.图象在第二、四象限内 D.若,则
12.一组数据1,2,3,3,4,1.若添加一个数据3,则下列统计量中,发生变化的是( )
A.平均数 B.众数 C.中位数 D.方差
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,直线与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是______.
14.如图,已知的半径为2,内接于,,则__________.
15.若代数式的值为零,则x=_____.
16.已知,则______
17.如图,ABCD是菱形,AC是对角线,点E是AB的中点,过点E作对角线AC的垂线,垂足是点M,交AD边于点F,连结DM.若∠BAD=120°,AE=2,则DM=__.
18.如图,和是分别沿着AB,AC边翻折形成的,若,则的度数是______度
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在△ABC中,AB=AC,点,在边上,.求证:.
20.(6分)如图,ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线交CB的延长线于点E,交AC于点F.
(1)求证:点F是AC的中点;
(2)若∠A=30°,AF=,求图中阴影部分的面积.
21.(6分)先化简,再求值:(﹣a)÷(1+),其中a是不等式﹣ <a<的整数解.
22.(8分)某食品厂生产一种半成品食材,产量百千克与销售价格元千克满足函数关系式,从市场反馈的信息发现,该半成品食材的市场需求量百千克与销售价格元千克满足一次函数关系,如下表:
销售价格元千克
2
4
10
市场需求量百千克
12
10
4
已知按物价部门规定销售价格x不低于2元千克且不高于10元千克
求q与x的函数关系式;
当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x的取值范围;
当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃若该半成品食材的成本是2元千克.
求厂家获得的利润百元与销售价格x的函数关系式;
当厂家获得的利润百元随销售价格x的上涨而增加时,直接写出x的取值范围利润售价成本
23.(8分)如图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.
以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.
24.(10分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.
(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;
(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.
25.(10分)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.1°,∠PBA=26.1.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A,B为参照点,结果精确到0.1米)
(参考数据:sin38.1°=0.62,cos38.1°=0.78,tan38.1°=0.80,sin26.1°=0.41,cos26.1°=0.89,tan26.1°=0.10)
26.(12分)已知抛物线的开口向上顶点为P
(1)若P点坐标为(4,一1),求抛物线的解析式;
(2)若此抛物线经过(4,一1),当-1≤x≤2时,求y的取值范围(用含a的代数式表示)
(3)若a=1,且当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,求b的值
27.(12分)如图,在Rt△ABC中∠ABC=90°,AC的垂直平分线交BC于D点,交AC于E点,OC=OD.
(1)若,DC=4,求AB的长;
(2)连接BE,若BE是△DEC的外接圆的切线,求∠C的度数.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
各项计算得到结果,即可作出判断.
【详解】
A、原式=a5,不符合题意;
B、原式=x9,不符合题意;
C、原式=2x5,不符合题意;
D、原式=-a4,符合题意,
故选D.
【点睛】
此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
2、D
【解析】
由抛物线与x轴有两个交点可得出△=b2-4ac>0,进而可得出关于m的一元一次不等式,解之即可得出m的取值范围.
【详解】
∵抛物线y=x2-2x+m与x轴有两个交点,
∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,
解得:m<1.
故选D.
【点睛】
本题考查了抛物线与x轴的交点,牢记“当△=b2-4ac>0时,抛物线与x轴有2个交点”是解题的关键.
3、A
【解析】
根据二次函数的平移规律即可得出.
【详解】
解:向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为
故答案为:A.
【点睛】
本题考查了二次函数的平移,解题的关键是熟知二次函数的平移规律.
4、C
【解析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【详解】
根据三视图知,该几何体中小正方体的分布情况如下图所示:
所以组成这个几何体的小正方体个数最多为9个,
故选C.
【点睛】
考查了三视图判定几何体,关键是对三视图灵活运用,体现了对空间想象能力的考查.
5、D
【解析】
试题分析:观察函数图象得到当﹣2<x<0或x>2时,正比例函数图象都在反比例函数图象上方,即有y=x的函数值大于的函数值.故选D.
考点:1.反比例函数与一次函数的交点问题;2. 数形结合思想的应用.
6、C
【解析】
根据绝对值的计算法则解答.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:
①当a是正有理数时,a的绝对值是它本身a;
②当a是负有理数时,a的绝对值是它的相反数﹣a;
③当a是零时,a的绝对值是零.
【详解】
解:.
故选
【点睛】
此题重点考查学生对绝对值的理解,熟练掌握绝对值的计算方法是解题的关键.
7、A
【解析】
根据异号两数相加的法则进行计算即可.
【详解】
解:因为-2,3异号,且|-2|<|3|,所以-2+3=1.
故选A.
【点睛】
本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.
8、C
【解析】
设用张铝片制作瓶身,则用张铝片制作瓶底,可作瓶身16x个,瓶底个,再根据一个瓶身和两个瓶底可配成一套,即可列出方程.
【详解】
设用张铝片制作瓶身,则用张铝片制作瓶底,
依题意可列方程
故选C.
【点睛】
此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.
9、C
【解析】
因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.
【详解】
(1)将这组数据从小到大的顺序排列为2,3,4,5,x,
处于中间位置的数是4,
∴中位数是4,
平均数为(2+3+4+5+x)÷5,
∴4=(2+3+4+5+x)÷5,
解得x=6;符合排列顺序;
(2)将这组数据从小到大的顺序排列后2,3,4,x,5,
中位数是4,
此时平均数是(2+3+4+5+x)÷5=4,
解得x=6,不符合排列顺序;
(3)将这组数据从小到大的顺序排列后2,3,x,4,5,
中位数是x,
平均数(2+3+4+5+x)÷5=x,
解得x=3.5,符合排列顺序;
(4)将这组数据从小到大的顺序排列后2,x,3,4,5,
中位数是3,
平均数(2+3+4+5+x)÷5=3,
解得x=1,不符合排列顺序;
(5)将这组数据从小到大的顺序排列后x,2,3,4,5,
中位数是3,
平均数(2+3+4+5+x)÷5=3,
解得x=1,符合排列顺序;
∴x的值为6、3.5或1.
故选C.
【点睛】
考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.
10、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将800亿用科学记数法表示为:8×1.
故选:B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
11、B
【解析】
试题分析:根据反比例函数y=的性质,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大,即可作出判断.
试题解析:A、(-1,2)满足函数的解析式,则图象必经过点(-1,2);
B、在每个象限内y随x的增大而增大,在自变量取值范围内不成立,则命题错误;
C、命题正确;
D、命题正确.
故选B.
考点:反比例函数的性质
12、D
【解析】
A. ∵原平均数是:(1+2+3+3+4+1) ÷6=3;
添加一个数据3后的平均数是:(1+2+3+3+4+1+3) ÷7=3;
∴平均数不发生变化.
B. ∵原众数是:3;
添加一个数据3后的众数是:3;
∴众数不发生变化;
C. ∵原中位数是:3;
添加一个数据3后的中位数是:3;
∴中位数不发生变化;
D. ∵原方差是:;
添加一个数据3后的方差是:;
∴方差发生了变化.
故选D.
点睛:本题主要考查的是众数、中位数、方差、平均数的,熟练掌握相关概念和公式是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
解:过点C作CP⊥直线AB于点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,如图所示.
当x=0时,y=3,∴点B的坐标为(0,3);
当y=0时,x=4,∴点A的坐标为(4,0),∴OA=4,OB=3,∴AB==5,∴sinB=.
∵C(0,﹣1),∴BC=3﹣(﹣1)=4,∴CP=BC•sinB=.
∵PQ为⊙C的切线,∴在Rt△CQP中,CQ=1,∠CQP=90°,∴PQ==.
故答案为.
14、
【解析】
分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.
详解:连接AD、AE、OA、OB,
∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,
∴∠ADB=45°,
∴∠AOB=90°,
∵OA=OB=2,
∴AB=2,
故答案为:2.
点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
15、3
【解析】
由题意得,=0,解得:x=3,经检验的x=3是原方程的根.
16、34
【解析】
∵,∴=,
故答案为34.
17、.
【解析】
作辅助线,构建直角△DMN,先根据菱形的性质得:∠DAC=60°,AE=AF=2,也知菱形的边长为4,利用勾股定理求MN和DN的长,从而计算DM的长.
【详解】
解:过M作MN⊥AD于N,
∵四边形ABCD是菱形,
∴
∵EF⊥AC,
∴AE=AF=2,∠AFM=30°,
∴AM=1,
Rt△AMN中,∠AMN=30°,
∴
∵AD=AB=2AE=4,
∴
由勾股定理得:
故答案为
【点睛】
本题主要考查了菱形的性质,等腰三角形的性质,勾股定理及直角三角形30度角的性质,熟练掌握直角三角形中30°所对的直角边是斜边的一半.
18、60
【解析】
∵∠BAC=150°∴∠ABC+∠ACB=30°∵∠EBA=∠ABC,∠DCA=∠ACB
∴∠EBA+∠ABC+∠DCA+∠ACB=2(∠ABC+∠ACB)=60°,即∠EBC+∠DCB=60°
∴θ=60°.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、见解析
【解析】
试题分析:证明△ABE≌△ACD 即可.
试题解析:法1:
∵AB=AC,
∴∠B=∠C,
∵AD=CE,
∴∠ADE=∠AED,
∴△ABE≌△ACD,
∴BE=CD ,
∴BD=CE,
法2:如图,作AF⊥BC于F,
∵AB=AC,
∴BF=CF,
∵AD=AE,
∴DF=EF,
∴BF-DF=CF-EF,
即BD=CE.
20、(1)见解析;(2)
【解析】
(1)连接OD、CD,如图,利用圆周角定理得到∠BDC=90°,再判定AC为⊙O的切线,则根据切线长定理得到FD=FC,然后证明∠3=∠A得到FD=FA,从而有FC=FA;
(2)在Rt△ACB中利用含30度的直角三角形三边的关系得到BC=AC=2,再证明△OBD为等边三角形得到∠BOD=60°,接着根据切线的性质得到OD⊥EF,从而可计算出DE的长,然后根据扇形的面积公式,利用S阴影部分=S△ODE-S扇形BOD进行计算即可.
【详解】
(1)证明:连接OD、CD,如图,
∵BC为直径,
∴∠BDC=90°,
∵∠ACB=90°,
∴AC为⊙O的切线,
∵EF为⊙O的切线,
∴FD=FC,
∴∠1=∠2,
∵∠1+∠A=90°,∠2+∠3=90°,
∴∠3=∠A,
∴FD=FA,
∴FC=FA,
∴点F是AC中点;
(2)解:在Rt△ACB中,AC=2AF=2,
而∠A=30°,
∴∠CBA=60°,BC=AC=2,
∵OB=OD,
∴△OBD为等边三角形,
∴∠BOD=60°,
∵EF为切线,
∴OD⊥EF,
在Rt△ODE中,DE=OD=,
∴S阴影部分=S△ODE﹣S扇形BOD=×1×﹣=﹣π.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和扇形的面积公式.
21、,1.
【解析】
首先化简(﹣a)÷(1+),然后根据a是不等式﹣<a<的整数解,求出a的值,再把求出的a的值代入化简后的算式,求出算式的值是多少即可.
【详解】
解:(﹣a)÷(1+)=×=,
∵a是不等式﹣<a<的整数解,∴a=﹣1,1,1,
∵a≠1,a+1≠1,∴a≠1,﹣1,∴a=1,
当a=1时,
原式==1.
22、(1) ;(2);(3);当时,厂家获得的利润y随销售价格x的上涨而增加.
【解析】
(1)直接利用待定系数法求出一次函数解析式进而得出答案;
(2)由题意可得:p≤q,进而得出x的取值范围;
(3)①利用顶点式求出函数最值得出答案;
②利用二次函数的增减性得出答案即可.
【详解】
(1)设q=kx+b(k,b为常数且k≠0),当x=2时,q=12,当x=4时,q=10,代入解析式得:,解得:,∴q与x的函数关系式为:q=﹣x+14;
(2)当产量小于或等于市场需求量时,有p≤q,∴x+8≤﹣x+14,解得:x≤4,又2≤x≤10,∴2≤x≤4;
(3)①当产量大于市场需求量时,可得4<x≤10,由题意得:厂家获得的利润是:
y=qx﹣2p=﹣x2+13x﹣16=﹣(x)2;
②∵当x时,y随x的增加而增加.
又∵产量大于市场需求量时,有4<x≤10,∴当4<x时,厂家获得的利润y随销售价格x的上涨而增加.
【点睛】
本题考查了待定系数法求一次函数解析式以及二次函数最值求法等知识,正确得出二次函数解析式是解题的关键.
23、(1)作图见解析;(2)作图见解析;5π(平方单位).
【解析】
(1)连接AO、BO、CO并延长到2AO、2BO、2CO长度找到各点的对应点,顺次连接即可.
(2)△A′B′C′的A′、C′绕点B′顺时针旋转90°得到对应点,顺次连接即可.A′B′在旋转过程中扫过的图形面积是一个扇形,根据扇形的面积公式计算即可.
【详解】
解:(1)见图中△A′B′C′
(2)见图中△A″B′C″
扇形的面积(平方单位).
【点睛】
本题主要考查了位似图形及旋转变换作图的方法及扇形的面积公式.
24、(1);(2)列表见解析,.
【解析】
试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.
试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:
小华
小丽
-1
0
2
-1
(-1,-1)
(-1,0)
(-1,2)
0
(0,-1)
(0,0)
(0,2)
2
(2,-1)
(2,0)
(2,2)
共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,
∴P(点M落在如图所示的正方形网格内)==.
考点:1列表或树状图求概率;2平面直角坐标系.
25、49.2米
【解析】
设PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的长度,继而也可确定小桥在小道上的位置.
【详解】
解:设PD=x米,
∵PD⊥AB,∴∠ADP=∠BDP=90°.
在Rt△PAD中,,∴.
在Rt△PBD中,,∴.
又∵AB=80.0米,∴,解得:x≈24.6,即PD≈24.6米.
∴DB=2x=49.2米.
答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米.
26、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.
【解析】
(1)将P(4,-1)代入,可求出解析式
(2)将(4,-1)代入求得:b=-4a-1,再代入对称轴直线 中,可判断,且开口向上,所以y随x的增大而减小,再把x=-1,x=2代入即可求得.
(3)观察图象可得,当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,这些点可能为x=0,x=1,三种情况,再根据对称轴在不同位置进行讨论即可.
【详解】
解:(1)由此抛物线顶点为P(4,-1),
所以y=a(x-4)2-1=ax2-8ax+16a-1,即16a-1=3,解得a=, b=-8a=-2
所以抛物线解析式为:;
(2)由此抛物线经过点C(4,-1),
所以 一1=16a+4b+3,即b=-4a-1.
因为抛物线的开口向上,则有
其对称轴为直线,而
所以当-1≤x≤2时,y随着x的增大而减小
当x=-1时,y=a+(4a+1)+3=4+5a
当x=2时,y=4a-2(4a+1)+3=1-4a
所以当-1≤x≤2时,1-4a≤y≤4+5a;
(3)当a=1时,抛物线的解析式为y=x2+bx+3
∴抛物线的对称轴为直线
由抛物线图象可知,仅当x=0,x=1或x=-时,抛物线上的点可能离x轴最远
分别代入可得,当x=0时,y=3
当x=1时,y=b+4
当x=-时,y=-+3
①当一<0,即b>0时,3≤y≤b+4,
由b+4=6解得b=2
②当0≤-≤1时,即一2≤b≤0时,△=b2-12<0,抛物线与x轴无公共点
由b+4=6解得b=2(舍去);
③当 ,即b<-2时,b+4≤y≤3,
由b+4=-6解得b=-10
综上,b=2或-10
【点睛】
本题考查了二次函数的性质,待定系数法求函数解析式,以及最值问题,关键是对称轴在不同的范围内,抛物线上的点到x轴距离的最大值的点不同.
27、(1);(2)30°
【解析】
(1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易证,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=sinA=,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例线段可求AB;
(2)连接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切线,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜边上的中线,那么BE=CE,于是∠EBC=∠C,从而有∠EOB=∠EDC,又OE=OD,易证△DEO是等边三角形,那么∠EDC=60°,从而可求∠C.
【详解】
解:(1)∵AC的垂直平分线交BC于D点,交AC于E点,
∴∠DEC=90°,AE=EC,
∵∠ABC=90°,∠C=∠C,
∴∠A=∠CDE,△ABC∽△DEC,
∴sin∠CDE=,AB:AC=DE:DC,
∵DC=4,
∴ED=3,
∴DE=,
∴AC=6,
∴AB:6=:4,
∴AB=;
(2)连接OE,
∵∠DEC=90°,
∴∠EDC+∠C=90°,
∵BE是⊙O的切线,
∴∠BEO=90°,
∴∠EOB+∠EBC=90°,
∵E是AC的中点,∠ABC=90°,
∴BE=EC,
∴∠EBC=∠C,
∴∠EOB=∠EDC,
又∵OE=OD,
∴△DOE是等边三角形,
∴∠EDC=60°,
∴∠C=30°.
【点睛】
考查了切线的性质、线段垂直平分线的性质、相似三角形的判定和性质、勾股定理、等边三角形的判定和性质.解题的关键是连接OE,构造直角三角形.
江苏省盐城市大丰东台重点名校2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份江苏省盐城市大丰东台重点名校2021-2022学年中考数学对点突破模拟试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,对于一组统计数据等内容,欢迎下载使用。
广东省深圳市外国语校2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份广东省深圳市外国语校2021-2022学年中考数学对点突破模拟试卷含解析,共20页。试卷主要包含了如果,那么代数式的值为,若一次函数y=,下列说法正确的是等内容,欢迎下载使用。
2022年江苏省盐城市射阳外国语学校中考三模数学试题含解析: 这是一份2022年江苏省盐城市射阳外国语学校中考三模数学试题含解析,共26页。