06解答题基础题-江苏省无锡市五年(2018-2022)中考数学真题分层分类汇编
展开06解答题基础题-江苏省无锡市五年(2018-2022)中考数学真题分层分类汇编
一.完全平方公式(共1小题)
1.(2020•无锡)计算:
(1)|﹣3|+2﹣2﹣()0;
(2)(a+b)2﹣b(b+2a).
二.平方差公式(共1小题)
2.(2022•无锡)计算:
(1)|﹣|×(﹣)2﹣cos60°;
(2)a(a+2)﹣(a+b)(a﹣b)﹣b(b﹣3).
三.分式的加减法(共2小题)
3.(2021•无锡)计算:
(1)|﹣|﹣(﹣2)3+sin30°;
(2)﹣.
4.(2020•无锡)计算:
(1)(﹣2)2+|﹣5|﹣;
(2).
四.二次根式的混合运算(共1小题)
5.(2019•无锡)计算:
(1)×﹣+;
(2)(x+y)2﹣x(x+y).
五.解一元二次方程-配方法(共1小题)
6.(2022•无锡)(1)解方程:x2﹣2x﹣5=0;
(2)解不等式组:.
六.解一元二次方程-公式法(共2小题)
7.(2020•无锡)解方程:
(1)x2+x﹣1=0;
(2).
8.(2019•无锡)(1)解方程:2x2﹣x﹣5=0;
(2)解不等式组:.
七.根与系数的关系(共1小题)
9.(2020•无锡)已知关于x的方程:4x2+4mx+2m﹣1=0(m为实数).
(1)求证:对于任意给定的实数m,方程恒有两个实数根;
(2)设x1,x2是方程的两个实数根,求证:x1+x2+m=0.
八.分式方程的应用(共1小题)
10.(2021•无锡)为了提高广大职工对消防知识的学习热情,增强职工的消防意识,某单位工会决定组织消防知识竞赛活动,本次活动拟设一、二等奖若干名,并购买相应奖品.现有经费1275元用于购买奖品,且经费全部用完,已知一等奖奖品单价与二等奖奖品单价之比为4:3.当用600元购买一等奖奖品时,共可购买一、二等奖奖品25件.
(1)求一、二等奖奖品的单价;
(2)若购买一等奖奖品的数量不少于4件且不超过10件,则共有哪几种购买方式?
九.解一元一次不等式组(共1小题)
11.(2021•无锡)(1)解方程:(x+1)2﹣4=0;
(2)解不等式组:.
一十.反比例函数综合题(共1小题)
12.(2019•无锡)如图,一次函数y=x+3的图象与反比例函数y=(x>0)的图象相交于点A(1,m),与x轴相交于点B.
(1)求这个反比例函数的表达式;
(2)C为反比例函数的图象上异于点A的一点,直线AC交x轴于点D,设直线AC所对应的函数表达式为y=nx+b.
①若△ABD的面积为12,求n、b的值;
②作CE⊥x轴,垂足为E,记t=OE•DE,求n•t的值.
一十一.二次函数的应用(共1小题)
13.(2022•无锡)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).
(1)若矩形养殖场的总面积为36m2,求此时x的值;
(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?
一十二.全等三角形的判定与性质(共3小题)
14.(2021•无锡)已知:如图,AC,DB相交于点O,AB=DC,∠ABO=∠DCO.
求证:(1)△ABO≌△DCO;
(2)∠OBC=∠OCB.
15.(2020•无锡)△ABC中,D、E分别为AB、AC的中点,F为EC的中点,BC、DF的延长线交于点G.
(1)求证:△DEF≌△GCF;
(2)求证:BC=2CG.
16.(2020•无锡)如图,已知AB∥CD,AB=CD,BE=CF.
求证:(1)△ABF≌△DCE;
(2)AF∥DE.
一十三.平行四边形的性质(共2小题)
17.(2022•无锡)如图,在▱ABCD中,点O为对角线BD的中点,EF过点O且分别交AB、DC于点E、F,连接DE、BF.
求证:(1)△DOF≌△BOE;
(2)DE=BF.
18.(2019•无锡)如图,在▱ABCD中,点E、F分别在边AD、BC上,且DE=BF,直线EF与BA、DC的延长线分别交于点G,H.求证:
(1)△DEH≌△BFG;
(2)AG=CH.
一十四.翻折变换(折叠问题)(共1小题)
19.(2022•无锡)如图,已知四边形ABCD为矩形,AB=2,BC=4,点E在BC上,CE=AE,将△ABC沿AC翻折到△AFC,连接EF.
(1)求EF的长;
(2)求sin∠CEF的值.
一十五.相似三角形的判定与性质(共1小题)
20.(2020•无锡)如图,DB过⊙O的圆心,交⊙O于点A、B,DC是⊙O的切线,点C是切点,已知∠D=30°,DC=.
(1)求证:△BOC∽△BCD;
(2)求△BCD的周长.
一十六.扇形统计图(共2小题)
21.(2022•无锡)育人中学初二年级共有200名学生,2021年秋学期学校组织初二年级学生参加30秒跳绳训练,开学初和学期末分别对初二年级全体学生进行了摸底测试和最终测试,两次测试数据如下:
育人中学初二学生30秒跳绳测试成绩的频数分布表
跳绳个数(x)
x≤50
50<x≤60
60<x≤70
70<x≤80
x>80
频数(摸底测试)
19
27
72
a
17
频数(最终测试)
3
6
59
b
c
(1)表格中a= ;
(2)请把下面的扇形统计图补充完整;(只需标注相应的数据)
(3)请问经过一个学期的训练,该校初二年级学生最终测试30秒跳绳超过80个的人数有多少?
22.(2021•无锡)某企业为推进全民健身活动,提升员工身体素质,号召员工开展健身锻炼活动,经过两个月的宣传发动,员工健身锻炼的意识有了显著提高.为了调查本企业员工上月参加健身锻炼的情况,现从1500名员工中随机抽取200人调查每人上月健身锻炼的次数,并将调查所得的数据整理如下:
某企业员工参加健身锻炼次数的频数分布表
锻炼次数x(代号)
0<x≤5
(A)
5<x≤10
(B)
10<x≤15
(C)
15<x≤20
(D)
20<x≤25
(E)
25<x≤30
(F)
频数
10
a
68
c
24
6
频率
0.05
b
0.34
d
0.12
0.03
(1)表格中a= ;
(2)请把扇形统计图补充完整;(只需标注相应的数据)
(3)请估计该企业上月参加健身锻炼超过10次的员工有多少人?
一十七.条形统计图(共1小题)
23.(2020•无锡)小李2014年参加工作,每年年底都把本年度收入减去支出后的余额存入银行(存款利息记入收入),2014年底到2019年底,小李的银行存款余额变化情况如下表所示:(单位:万元)
年份
2014年
2015年
2016年
2017年
2018年
2019年
收入
3
8
9
a
14
18
支出
1
4
5
6
c
6
存款余额
2
6
10
15
b
34
(1)表格中a= ;
(2)请把下面的条形统计图补充完整;(画图后标注相应的数据)
(3)请问小李在哪一年的支出最多?支出了多少万元?
一十八.列表法与树状图法(共2小题)
24.(2020•无锡)某校举行辩论赛,现初三(1)班要从3名男生、2名女生中选送学生参加比赛.
(1)若选送1名学生参赛,则男生被选中的概率为 ;
(2)若选送2名学生参赛,求选出的恰好是1位男生、1位女生的概率(请用“画树状图”或“列表”或“列举”等方法给出分析过程).
25.(2020•无锡)现有4张正面分别写有数字1、2、3、4的卡片,将4张卡片的背面朝上,洗匀.
(1)若从中任意抽取1张,抽的卡片上的数字恰好为3的概率是 ;
(2)若先从中任意抽取1张(不放回),再从余下的3张中任意抽取1张,求抽得的2张卡片上的数字之和为3的倍数的概率.(请用“画树状图”或“列表”等方法写出分析过程)
参考答案与试题解析
一.完全平方公式(共1小题)
1.(2020•无锡)计算:
(1)|﹣3|+2﹣2﹣()0;
(2)(a+b)2﹣b(b+2a).
【解答】解:(1)原式=3+﹣1
=;
(2)原式=a2+2ab+b2﹣b2﹣2ab
=a2.
二.平方差公式(共1小题)
2.(2022•无锡)计算:
(1)|﹣|×(﹣)2﹣cos60°;
(2)a(a+2)﹣(a+b)(a﹣b)﹣b(b﹣3).
【解答】解:(1)原式=×3﹣
=﹣
=1;
(2)原式=a2+2a﹣(a2﹣b2)﹣b2+3b
=a2+2a﹣a2+b2﹣b2+3b
=2a+3b.
三.分式的加减法(共2小题)
3.(2021•无锡)计算:
(1)|﹣|﹣(﹣2)3+sin30°;
(2)﹣.
【解答】解:(1)原式=+8+
=1+8
=9.
(2)原式=﹣
=
=.
4.(2020•无锡)计算:
(1)(﹣2)2+|﹣5|﹣;
(2).
【解答】解:(1)原式=4+5﹣4
=5;
(2)原式=
=
=.
四.二次根式的混合运算(共1小题)
5.(2019•无锡)计算:
(1)×﹣+;
(2)(x+y)2﹣x(x+y).
【解答】解:(1)原式=﹣2+2
=3﹣2+2
=+2;
(2)原式=x2+2xy+y2﹣x2﹣xy
=xy+y2.
五.解一元二次方程-配方法(共1小题)
6.(2022•无锡)(1)解方程:x2﹣2x﹣5=0;
(2)解不等式组:.
【解答】解:(1)x2﹣2x﹣5=0,
x2﹣2x=5,
x2﹣2x+1=5+1,
(x﹣1)2=6,
∴x﹣1=±,
解得x1=1+,x2=1﹣;
(2),
解不等式①,得:x>1,
解不等式②,得:x≤,
∴原不等式组的解集是1<x≤.
六.解一元二次方程-公式法(共2小题)
7.(2020•无锡)解方程:
(1)x2+x﹣1=0;
(2).
【解答】解:(1)∵a=1,b=1,c=﹣1,
∴△=12﹣4×1×(﹣1)=5>0,
∴x=,
∴x1=,x2=;
(2),
解①得,x≥0,
解②得,x<1,
所以不等式组的解集为0≤x<1.
8.(2019•无锡)(1)解方程:2x2﹣x﹣5=0;
(2)解不等式组:.
【解答】解:(1)∵a=2,b=﹣1,c=﹣5,
∴△=(﹣1)2﹣4×2×(﹣5)=41>0,
则x=;
(2)解不等式3(x+1)>x﹣1,得:x>﹣2,
解不等式≥2x,得:x≤2,
则不等式组的解集为﹣2<x≤2.
七.根与系数的关系(共1小题)
9.(2020•无锡)已知关于x的方程:4x2+4mx+2m﹣1=0(m为实数).
(1)求证:对于任意给定的实数m,方程恒有两个实数根;
(2)设x1,x2是方程的两个实数根,求证:x1+x2+m=0.
【解答】(1)证明:∵a=4,b=4m,c=2m﹣1,
∴Δ=b2﹣4ac=(4m)2﹣4×4(2m﹣1)=16(m﹣1)2≥0
∴方程有两个实数根.
(2)证明:∵x1,x2是该方程的两个实数根,
∴x1+x2=﹣=﹣m,
∴x1+x2+m=0.
八.分式方程的应用(共1小题)
10.(2021•无锡)为了提高广大职工对消防知识的学习热情,增强职工的消防意识,某单位工会决定组织消防知识竞赛活动,本次活动拟设一、二等奖若干名,并购买相应奖品.现有经费1275元用于购买奖品,且经费全部用完,已知一等奖奖品单价与二等奖奖品单价之比为4:3.当用600元购买一等奖奖品时,共可购买一、二等奖奖品25件.
(1)求一、二等奖奖品的单价;
(2)若购买一等奖奖品的数量不少于4件且不超过10件,则共有哪几种购买方式?
【解答】解:(1)设一等奖奖品单价为4x元,则二等奖奖品单价为3x元,
依题意得:+=25,
解得:x=15,
经检验,x=15是原方程的解,且符合题意,
∴4x=60,3x=45.
答:一等奖奖品单价为60元,二等奖奖品单价为45元.
(2)设购买一等奖奖品m件,二等奖奖品n件,
依题意得:60m+45n=1275,
∴n=.
∵m,n均为正整数,且4≤m≤10,
∴或或,
∴共有3种购买方案,
方案1:购买4件一等奖奖品,23件二等奖奖品;
方案2:购买7件一等奖奖品,19件二等奖奖品;
方案3:购买10件一等奖奖品,15件二等奖奖品.
九.解一元一次不等式组(共1小题)
11.(2021•无锡)(1)解方程:(x+1)2﹣4=0;
(2)解不等式组:.
【解答】解:(1)∵(x+1)2﹣4=0,
∴(x+1)2=4,
∴x+1=±2,
解得:x1=1,x2=﹣3.
(2),
由①得,x≥1,
由②得,x<3,
故不等式组的解集为:1≤x<3.
一十.反比例函数综合题(共1小题)
12.(2019•无锡)如图,一次函数y=x+3的图象与反比例函数y=(x>0)的图象相交于点A(1,m),与x轴相交于点B.
(1)求这个反比例函数的表达式;
(2)C为反比例函数的图象上异于点A的一点,直线AC交x轴于点D,设直线AC所对应的函数表达式为y=nx+b.
①若△ABD的面积为12,求n、b的值;
②作CE⊥x轴,垂足为E,记t=OE•DE,求n•t的值.
【解答】解:(1)把x=1代入y=x+3,得y=4,
∴m=4,
∴A点坐标为:(1,4),
∴k=4,
则反比例函数表达式为:y=;
(2)①∵△ABD的面积为12,A(1,4),
∴BD=6,
把y=0代入y=x+3,得x=﹣3,
∴B点坐标为:(﹣3,0),
∴D点的坐标为:(3,0),
把x=1,y=4;x=3,y=0,分别代入y=nx+b,
解得:,
②把x=1,y=4代入得:n+b=4,得b=4﹣n,
令y=0,得x=,
∴点D的坐标为:(,0),
当=nx+4﹣n时,
解得:x1=1,x2=﹣,
∴点E的坐标为:(﹣,0),
∴OE=﹣,
∴DE=﹣(﹣)=1,
∵t=OE•DE=﹣,
∴n•t=﹣4.
一十一.二次函数的应用(共1小题)
13.(2022•无锡)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).
(1)若矩形养殖场的总面积为36m2,求此时x的值;
(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?
【解答】解:(1)根据题意知:较大矩形的宽为2xm,长为=(8﹣x) m,
∴(x+2x)×(8﹣x)=36,
解得x=2或x=6,
经检验,x=6时,3x=18>10不符合题意,舍去,
∴x=6,
答:此时x的值为2m;
(2)设矩形养殖场的总面积是ym2,
∵墙的长度为10,
∴0<x≤,
根据题意得:y=(x+2x)×(8﹣x)=﹣3x2+24x=﹣3(x﹣4)2+48,
∵﹣3<0,
∴当x=时,y取最大值,最大值为﹣3×(﹣4)2+48=(m2),
答:当x=时,矩形养殖场的总面积最大,最大值为m2.
一十二.全等三角形的判定与性质(共3小题)
14.(2021•无锡)已知:如图,AC,DB相交于点O,AB=DC,∠ABO=∠DCO.
求证:(1)△ABO≌△DCO;
(2)∠OBC=∠OCB.
【解答】证明:(1)在△ABO和△DCO中,
,
∴△ABO≌△DCO(AAS);
(2)由(1)知,△ABO≌△DCO,
∴OB=OC
∴∠OBC=∠OCB.
15.(2020•无锡)△ABC中,D、E分别为AB、AC的中点,F为EC的中点,BC、DF的延长线交于点G.
(1)求证:△DEF≌△GCF;
(2)求证:BC=2CG.
【解答】证明:(1)∵D、E分别为AB、AC的中点,F为EC的中点,
∴BC=2DE,DE∥BC,EF=FC,
∴∠EDF=∠G,
在△DEF和△GCF中,
,
∴△DEF≌△GCF(AAS);
(2)∵△DEF≌△GCF,
∴DE=CG,
∴BC=2CG.
16.(2020•无锡)如图,已知AB∥CD,AB=CD,BE=CF.
求证:(1)△ABF≌△DCE;
(2)AF∥DE.
【解答】证明:(1)∵AB∥CD,
∴∠B=∠C,
∵BE=CF,
∴BE﹣EF=CF﹣EF,
即BF=CE,
在△ABF和△DCE中,
,
∴△ABF≌△DCE(SAS);
(2)∵△ABF≌△DCE,
∴∠AFB=∠DEC,
∴∠AFE=∠DEF,
∴AF∥DE.
一十三.平行四边形的性质(共2小题)
17.(2022•无锡)如图,在▱ABCD中,点O为对角线BD的中点,EF过点O且分别交AB、DC于点E、F,连接DE、BF.
求证:(1)△DOF≌△BOE;
(2)DE=BF.
【解答】证明:(1)∵点O为对角线BD的中点,
∴OD=OB,
∵四边形ABCD是平行四边形,
∴DF∥EB,
∴∠DFE=∠BEF,
在△DOF和△BOE中,
,
∴△DOF≌△BOE(AAS).
(2)∵△DOF≌△BOE,
∴DF=EB,
∵DF∥EB,
∴四边形DFBE是平行四边形,
∴DE=BF.
18.(2019•无锡)如图,在▱ABCD中,点E、F分别在边AD、BC上,且DE=BF,直线EF与BA、DC的延长线分别交于点G,H.求证:
(1)△DEH≌△BFG;
(2)AG=CH.
【解答】解:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,∠B=∠D,AB=CD,
∴∠G=∠H,
∵∠D=∠B,∠H=∠G,DE=BF,
∴△DEH≌△BFG(AAS);
(2)∵△DEH≌△BFG,
∴GB=HD,
又∵AB=CD,
∴GB﹣AB=HD﹣CD,
∴AG=CH.
一十四.翻折变换(折叠问题)(共1小题)
19.(2022•无锡)如图,已知四边形ABCD为矩形,AB=2,BC=4,点E在BC上,CE=AE,将△ABC沿AC翻折到△AFC,连接EF.
(1)求EF的长;
(2)求sin∠CEF的值.
【解答】解:(1)∵CE=AE,
∴∠ECA=∠EAC,
根据翻折可得:∠ECA=∠FCA,∠BAC=∠CAF,
∵四边形ABCD是矩形,
∴DA∥CB,
∴∠ECA=∠CAD,
∴∠EAC=∠CAD,
∴∠DAF=∠BAE,
∵∠BAD=90°,
∴∠EAF=90°,
设CE=AE=x,则BE=4﹣x,
在△BAE中,根据勾股定理可得:
BA2+BE2=AE2,
即:,
解得:x=3,
在Rt△EAF中,EF==.
(2)过点F作FG⊥BC交BC于点G,
设CG=x,则GE=3﹣x,
∵FC=4,FE=,
∴FG2=FC2﹣CG2=FE2﹣EG2,
即:16﹣x2=17﹣(3﹣x)2,
解得:x=,
∴FG==,
∴sin∠CEF==.
一十五.相似三角形的判定与性质(共1小题)
20.(2020•无锡)如图,DB过⊙O的圆心,交⊙O于点A、B,DC是⊙O的切线,点C是切点,已知∠D=30°,DC=.
(1)求证:△BOC∽△BCD;
(2)求△BCD的周长.
【解答】证明:(1)∵DC是⊙O的切线,
∴∠OCD=90°,
∵∠D=30°,
∴∠BOC=∠D+∠OCD=30°+90°=120°,
∵OB=OC,
∴∠B=∠OCB=30°,
∴∠DCB=120°=∠BOC,
又∵∠B=∠B=30°,
∴△BOC∽△BCD;
(2)∵∠D=30°,DC=,∠OCD=90°,
∴DC=OC=,DO=2OC,
∴OC=1=OB,DO=2,
∵∠B=∠D=30°,
∴DC=BC=,
∴△BCD的周长=CD+BC+DB=++2+1=3+2.
一十六.扇形统计图(共2小题)
21.(2022•无锡)育人中学初二年级共有200名学生,2021年秋学期学校组织初二年级学生参加30秒跳绳训练,开学初和学期末分别对初二年级全体学生进行了摸底测试和最终测试,两次测试数据如下:
育人中学初二学生30秒跳绳测试成绩的频数分布表
跳绳个数(x)
x≤50
50<x≤60
60<x≤70
70<x≤80
x>80
频数(摸底测试)
19
27
72
a
17
频数(最终测试)
3
6
59
b
c
(1)表格中a= 65 ;
(2)请把下面的扇形统计图补充完整;(只需标注相应的数据)
(3)请问经过一个学期的训练,该校初二年级学生最终测试30秒跳绳超过80个的人数有多少?
【解答】解:(1)a=200﹣19﹣27﹣72﹣17=65,
故答案为:65;
(2)100%﹣41%﹣29.5%﹣3%﹣1.5%=25%,
扇形统计图补充:如图所示:
(3)200×25%=50(人),
答:经过一个学期的训练,该校初二年级学生最终测试30秒跳绳超过80个的人数有50人.
22.(2021•无锡)某企业为推进全民健身活动,提升员工身体素质,号召员工开展健身锻炼活动,经过两个月的宣传发动,员工健身锻炼的意识有了显著提高.为了调查本企业员工上月参加健身锻炼的情况,现从1500名员工中随机抽取200人调查每人上月健身锻炼的次数,并将调查所得的数据整理如下:
某企业员工参加健身锻炼次数的频数分布表
锻炼次数x(代号)
0<x≤5
(A)
5<x≤10
(B)
10<x≤15
(C)
15<x≤20
(D)
20<x≤25
(E)
25<x≤30
(F)
频数
10
a
68
c
24
6
频率
0.05
b
0.34
d
0.12
0.03
(1)表格中a= 42 ;
(2)请把扇形统计图补充完整;(只需标注相应的数据)
(3)请估计该企业上月参加健身锻炼超过10次的员工有多少人?
【解答】解:(1)a=200×21%=42(人),
故答案为:42;
(2)b=21%=0.21,
C组所占的百分比:0.34=34%,
D组所占的百分比是:d=1﹣0.05﹣0.21﹣0.34﹣0.12﹣0.03=0.25=25%,
扇形统计图补充完整如图:
;
(3)估计该企业上月参加健身锻炼超过10次的员工有1500×(0.34+0.25+0.12+0.03)=1110(人).
答:估计该企业上月参加健身锻炼超过10次的员工有1110人.
一十七.条形统计图(共1小题)
23.(2020•无锡)小李2014年参加工作,每年年底都把本年度收入减去支出后的余额存入银行(存款利息记入收入),2014年底到2019年底,小李的银行存款余额变化情况如下表所示:(单位:万元)
年份
2014年
2015年
2016年
2017年
2018年
2019年
收入
3
8
9
a
14
18
支出
1
4
5
6
c
6
存款余额
2
6
10
15
b
34
(1)表格中a= 11 ;
(2)请把下面的条形统计图补充完整;(画图后标注相应的数据)
(3)请问小李在哪一年的支出最多?支出了多少万元?
【解答】解:(1)10+a﹣6=15,解得,a=11,
故答案为:11;
(2)根据题意得,解得,,
即存款余额为22万元,
条形统计图补充为:
(3)小李在2018年的支出最多,支出了7万元.
一十八.列表法与树状图法(共2小题)
24.(2020•无锡)某校举行辩论赛,现初三(1)班要从3名男生、2名女生中选送学生参加比赛.
(1)若选送1名学生参赛,则男生被选中的概率为 ;
(2)若选送2名学生参赛,求选出的恰好是1位男生、1位女生的概率(请用“画树状图”或“列表”或“列举”等方法给出分析过程).
【解答】解:(1)∵初三(1)班要从3名男生、2名女生中选送学生参加比赛,
∴男生被选中的概率为=.
故答案为:.
(2)作出树状图如下图所示:
共有20种等可能的情况数,其中选出的恰好是1位男生、1位女生的有12种,
则选出的恰好是1位男生、1位女生的概率是=.
25.(2020•无锡)现有4张正面分别写有数字1、2、3、4的卡片,将4张卡片的背面朝上,洗匀.
(1)若从中任意抽取1张,抽的卡片上的数字恰好为3的概率是 ;
(2)若先从中任意抽取1张(不放回),再从余下的3张中任意抽取1张,求抽得的2张卡片上的数字之和为3的倍数的概率.(请用“画树状图”或“列表”等方法写出分析过程)
【解答】解:(1)从中任意抽取1张,抽的卡片上的数字恰好为3的概率=;
故答案为:;
(2)画树状图为:
共有12种等可能的结果数,其中抽得的2张卡片上的数字之和为3的倍数的结果数为4,
所以抽得的2张卡片上的数字之和为3的倍数的概率==.
江苏省镇江市5年(2018-2022)中考数学真题分类汇编-06解答题(基础题)知识点分类: 这是一份江苏省镇江市5年(2018-2022)中考数学真题分类汇编-06解答题(基础题)知识点分类,共23页。试卷主要包含了﹣1﹣2cs60°;,﹣1﹣tan45°+|﹣1|;,0﹣2sin45°+;,0;,解方程等内容,欢迎下载使用。
江苏省泰州市五年(2018-2022)中考数学真题分层分类汇编:03解答题(基础题)知识点分类: 这是一份江苏省泰州市五年(2018-2022)中考数学真题分层分类汇编:03解答题(基础题)知识点分类,共18页。试卷主要包含了×;,计算,分解因式,﹣1﹣sin60°;,的函数关系等内容,欢迎下载使用。
01选择题容易题-江苏省无锡市五年(2018-2022)中考数学真题分层分类汇编: 这是一份01选择题容易题-江苏省无锡市五年(2018-2022)中考数学真题分层分类汇编,共11页。