年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省泰州市五年(2018-2022)中考数学真题分层分类汇编:05解答题(提升题)知识点分类

    江苏省泰州市五年(2018-2022)中考数学真题分层分类汇编:05解答题(提升题)知识点分类第1页
    江苏省泰州市五年(2018-2022)中考数学真题分层分类汇编:05解答题(提升题)知识点分类第2页
    江苏省泰州市五年(2018-2022)中考数学真题分层分类汇编:05解答题(提升题)知识点分类第3页
    还剩29页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省泰州市五年(2018-2022)中考数学真题分层分类汇编:05解答题(提升题)知识点分类

    展开

    这是一份江苏省泰州市五年(2018-2022)中考数学真题分层分类汇编:05解答题(提升题)知识点分类,共32页。试卷主要包含了为函数y1、y2的“组合函数”,已知等内容,欢迎下载使用。
    江苏省泰州市五年(2018-2022)中考数学真题分层分类汇编:05解答题(提升题)知识点分类
    一.分式方程的应用(共1小题)
    1.(2018•泰州)为了改善生态环境,某乡村计划植树4000棵.由于志愿者的支援,实际工作效率提高了20%,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?
    二.一次函数综合题(共1小题)
    2.(2022•泰州)定义:对于一次函数y1=ax+b、y2=cx+d,我们称函数y=m(ax+b)+n(cx+d)(ma+nc≠0)为函数y1、y2的“组合函数”.
    (1)若m=3,n=1,试判断函数y=5x+2是否为函数y1=x+1、y2=2x﹣1的“组合函数”,并说明理由;
    (2)设函数y1=x﹣p﹣2与y2=﹣x+3p的图像相交于点P.
    ①若m+n>1,点P在函数y1、y2的“组合函数”图像的上方,求p的取值范围;
    ②若p≠1,函数y1、y2的“组合函数”图像经过点P.是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图像与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由.
    三.反比例函数综合题(共2小题)
    3.(2019•泰州)已知一次函数y1=kx+n(n<0)和反比例函数y2=(m>0,x>0).
    (1)如图1,若n=﹣2,且函数y1、y2的图象都经过点A(3,4).
    ①求m,k的值;
    ②直接写出当y1>y2时x的范围;
    (2)如图2,过点P(1,0)作y轴的平行线l与函数y2的图象相交于点B,与反比例函数y3=(x>0)的图象相交于点C.
    ①若k=2,直线l与函数y1的图象相交点D.当点B、C、D中的一点到另外两点的距离相等时,求m﹣n的值;
    ②过点B作x轴的平行线与函数y1的图象相交于点E.当m﹣n的值取不大于1的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d.

    4.(2018•泰州)平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1=(x>0)的图象上,点A′与点A关于点O对称,一次函数y2=mx+n的图象经过点A′.
    (1)设a=2,点B(4,2)在函数y1、y2的图象上.
    ①分别求函数y1、y2的表达式;
    ②直接写出使y1>y2>0成立的x的范围;
    (2)如图①,设函数y1、y2的图象相交于点B,点B的横坐标为3a,△AA'B的面积为16,求k的值;
    (3)设m=,如图②,过点A作AD⊥x轴,与函数y2的图象相交于点D,以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.

    四.抛物线与x轴的交点(共1小题)
    5.(2018•泰州)平面直角坐标系xOy中,二次函数y=x2﹣2mx+m2+2m+2的图象与x轴有两个交点.
    (1)当m=﹣2时,求二次函数的图象与x轴交点的坐标;
    (2)过点P(0,m﹣1)作直线l⊥y轴,二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上),求m的范围;
    (3)在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求△ABO的面积最大时m的值.

    五.二次函数综合题(共2小题)
    6.(2022•泰州)如图,二次函数y1=x2+mx+1的图像与y轴相交于点A,与反比例函数y2=(x>0)的图像相交于点B(3,1).
    (1)求这两个函数的表达式;
    (2)当y1随x的增大而增大且y1<y2时,直接写出x的取值范围;
    (3)平行于x轴的直线l与函数y1的图像相交于点C、D(点C在点D的左边),与函数y2的图像相交于点E.若△ACE与△BDE的面积相等,求点E的坐标.

    7.(2020•泰州)如图,二次函数y1=a(x﹣m)2+n,y2=6ax2+n(a<0,m>0,n>0)的图象分别为C1、C2,C1交y轴于点P,点A在C1上,且位于y轴右侧,直线PA与C2在y轴左侧的交点为B.

    (1)若P点的坐标为(0,2),C1的顶点坐标为(2,4),求a的值;
    (2)设直线PA与y轴所夹的角为α.
    ①当α=45°,且A为C1的顶点时,求am的值;
    ②若α=90°,试说明:当a、m、n各自取不同的值时,的值不变;
    (3)若PA=2PB,试判断点A是否为C1的顶点?请说明理由.
    六.全等三角形的应用(共1小题)
    8.(2018•泰州)对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)
    (1)根据以上操作和发现,求的值;
    (2)将该矩形纸片展开.
    ①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;
    ②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)

    七.三角形综合题(共1小题)
    9.(2022•泰州)已知:△ABC中,D为BC边上的一点.
    (1)如图①,过点D作DE∥AB交AC边于点E.若AB=5,BD=9,DC=6,求DE的长;
    (2)在图②中,用无刻度的直尺和圆规在AC边上作点F,使∠DFA=∠A;(保留作图痕迹,不要求写作法)
    (3)如图③,点F在AC边上,连接BF、DF.若∠DFA=∠A,△FBC的面积等于CD•AB,以FD为半径作⊙F,试判断直线BC与⊙F的位置关系,并说明理由.


    八.四边形综合题(共2小题)
    10.(2020•泰州)如图,正方形ABCD的边长为6,M为AB的中点,△MBE为等边三角形,过点E作ME的垂线分别与边AD、BC相交于点F、G,点P、Q分别在线段EF、BC上运动,且满足∠PMQ=60°,连接PQ.
    (1)求证:△MEP≌△MBQ.
    (2)当点Q在线段GC上时,试判断PF+GQ的值是否变化?如果不变,求出这个值,如果变化,请说明理由.
    (3)设∠QMB=α,点B关于QM的对称点为B',若点B'落在△MPQ的内部,试写出α的范围,并说明理由.

    11.(2019•泰州)如图,线段AB=8,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE与线段AB相交于点F(点F与点A、B不重合).
    (1)求证:△AEP≌△CEP;
    (2)判断CF与AB的位置关系,并说明理由;
    (3)求△AEF的周长.

    九.直线与圆的位置关系(共1小题)
    12.(2018•泰州)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.
    (1)试判断DE与⊙O的位置关系,并说明理由;
    (2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.

    一十.圆的综合题(共1小题)
    13.(2021•泰州)如图,在⊙O中,AB为直径,P为AB上一点,PA=1,PB=m(m为常数,且m>0).过点P的弦CD⊥AB,Q为上一动点(与点B不重合),AH⊥QD,垂足为H.连接AD、BQ.
    (1)若m=3.
    ①求证:∠OAD=60°;
    ②求的值;
    (2)用含m的代数式表示,请直接写出结果;
    (3)存在一个大小确定的⊙O,对于点Q的任意位置,都有BQ2﹣2DH2+PB2的值是一个定值,求此时∠Q的度数.

    一十一.解直角三角形的应用-坡度坡角问题(共1小题)
    14.(2018•泰州)日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L:(H﹣H1),其中L为楼间水平距离,H为南侧楼房高度,H1为北侧楼房底层窗台至地面高度.

    如图②,山坡EF朝北,EF长为15m,坡度为i=1:0.75,山坡顶部平地EM上有一高为22.5m的楼房AB,底部A到E点的距离为4m.
    (1)求山坡EF的水平宽度FH;
    (2)欲在AB楼正北侧山脚的平地FN上建一楼房CD,已知该楼底层窗台P处至地面C处的高度为0.9m,要使该楼的日照间距系数不低于1.25,底部C距F处至少多远?

    参考答案与试题解析
    一.分式方程的应用(共1小题)
    1.(2018•泰州)为了改善生态环境,某乡村计划植树4000棵.由于志愿者的支援,实际工作效率提高了20%,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?
    【解答】解:设原计划每天种x棵树,则实际每天种(1+20%)x棵,
    依题意得:﹣=3
    解得x=200,
    经检验得出:x=200是原方程的解.
    所以=20.
    答:原计划植树20天.
    二.一次函数综合题(共1小题)
    2.(2022•泰州)定义:对于一次函数y1=ax+b、y2=cx+d,我们称函数y=m(ax+b)+n(cx+d)(ma+nc≠0)为函数y1、y2的“组合函数”.
    (1)若m=3,n=1,试判断函数y=5x+2是否为函数y1=x+1、y2=2x﹣1的“组合函数”,并说明理由;
    (2)设函数y1=x﹣p﹣2与y2=﹣x+3p的图像相交于点P.
    ①若m+n>1,点P在函数y1、y2的“组合函数”图像的上方,求p的取值范围;
    ②若p≠1,函数y1、y2的“组合函数”图像经过点P.是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图像与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由.
    【解答】解:(1)函数y=5x+2是函数y1=x+1、y2=2x﹣1的“组合函数”,理由如下:
    ∵3(x+1)+(2x﹣1)=3x+3+2x﹣1=5x+2,
    ∴y=5x+2=3(x+1)+(2x﹣1),
    ∴函数y=5x+2是函数y1=x+1、y2=2x﹣1的“组合函数”;
    (2)①由得,
    ∴P(2p+1,p﹣1),
    ∵y1、y2的“组合函数”为y=m(x﹣p﹣2)+n(﹣x+3p),
    ∴x=2p+1时,y=m(2p+1﹣p﹣2)+n(﹣2p﹣1+3p)=(p﹣1)(m+n),
    ∵点P在函数y1、y2的“组合函数”图象的上方,
    ∴p﹣1>(p﹣1)(m+n),
    ∴(p﹣1)(1﹣m﹣n)>0,
    ∵m+n>1,
    ∴1﹣m﹣n<0,
    ∴p﹣1<0,
    ∴p<1;
    ②存在m=时,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变,Q(3,0),理由如下:
    由①知,P(2p+1,p﹣1),
    ∵函数y1、y2的“组合函数”y=m(x﹣p﹣2)+n(﹣x+3p)图象经过点P,
    ∴p﹣1=m(2p+1﹣p﹣2)+n(﹣2p﹣1+3p),
    ∴(p﹣1)(1﹣m﹣n)=0,
    ∵p≠1,
    ∴1﹣m﹣n=0,有n=1﹣m,
    ∴y=m(x﹣p﹣2)+n(﹣x+3p)=m(x﹣p﹣2)+(1﹣m)(﹣x+3p)=(2m﹣1)x+3p﹣(4p+2)m,
    令y=0得(2m﹣1)x+3p﹣(4p+2)m=0,
    变形整理得:(3﹣4m)p+(2m﹣1)x﹣2m=0,
    ∴当3﹣4m=0,即m=时,x﹣=0,
    ∴x=3,
    ∴m=时,“组合函数”图象与x轴交点Q的位置不变,Q(3,0).
    三.反比例函数综合题(共2小题)
    3.(2019•泰州)已知一次函数y1=kx+n(n<0)和反比例函数y2=(m>0,x>0).
    (1)如图1,若n=﹣2,且函数y1、y2的图象都经过点A(3,4).
    ①求m,k的值;
    ②直接写出当y1>y2时x的范围;
    (2)如图2,过点P(1,0)作y轴的平行线l与函数y2的图象相交于点B,与反比例函数y3=(x>0)的图象相交于点C.
    ①若k=2,直线l与函数y1的图象相交点D.当点B、C、D中的一点到另外两点的距离相等时,求m﹣n的值;
    ②过点B作x轴的平行线与函数y1的图象相交于点E.当m﹣n的值取不大于1的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d.

    【解答】解:(1)①将点A的坐标代入一次函数表达式并解得:k=2,
    将点A的坐标代入反比例函数得:m=3×4=12;
    ②由图象可以看出x>3时,y1>y2;
    (2)①当x=1时,点D、B、C的坐标分别为(1,2+n)、(1,m)、(1,n)(C在D的下方),

    当B为中点时,
    则BD=BC,即2+n﹣m=m﹣n,
    则 m﹣n=1;
    当D为中点时,
    则 DB=DC,即m﹣(2+n)=2+n﹣n,
    故m﹣n=4,
    当C为中点时,因为点C一定在点D的下方,故这种情况不存在;
    当B与D重合时,C到B,D的距离相等,
    则m=n+2,即m﹣n=2,
    ∴m﹣n=1或4或2.
    ②点E的横坐标为:,
    当点E在点B左侧时,
    d=BC+BE=m﹣n+(1﹣)=1+(m﹣n)(1﹣),
    m﹣n的值取不大于1的任意数时,d始终是一个定值,
    当1﹣=0时,此时k=1,从而d=1.
    当点E在点B右侧时,
    同理BC+BE=(m﹣n)(1+)﹣1,
    当1+=0,k=﹣1时,(不合题意舍去)
    故k=1,d=1.
    4.(2018•泰州)平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1=(x>0)的图象上,点A′与点A关于点O对称,一次函数y2=mx+n的图象经过点A′.
    (1)设a=2,点B(4,2)在函数y1、y2的图象上.
    ①分别求函数y1、y2的表达式;
    ②直接写出使y1>y2>0成立的x的范围;
    (2)如图①,设函数y1、y2的图象相交于点B,点B的横坐标为3a,△AA'B的面积为16,求k的值;
    (3)设m=,如图②,过点A作AD⊥x轴,与函数y2的图象相交于点D,以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.

    【解答】解:(1)①由已知,点B(4,2)在y1=(x>0)的图象上
    ∴k=8
    ∴y1=
    ∵a=2
    ∴点A坐标为(2,4),A′坐标为(﹣2,﹣4)
    把B(4,2),A(﹣2,﹣4)代入y2=mx+n

    解得
    ∴y2=x﹣2
    ②当y1>y2>0时,y1=图象在y2=x﹣2图象上方,且两函数图象在x轴上方
    ∴由图象得:2<x<4
    (2)分别过点A、B作AC⊥x轴于点C,BD⊥x轴于点D,连BO

    ∵O为AA′中点
    S△AOB=S△ABA′=8
    ∵点A、B在双曲线上
    ∴S△AOC=S△BOD
    ∴S△AOB=S四边形ACDB=8
    由已知点A、B坐标都表示为(a,)(3a,)

    解得k=6
    (3)由已知A(a,),则A′为(﹣a,﹣)
    把A′代入到y=

    ∴n=
    ∴A′D解析式为y=
    当x=a时,点D纵坐标为
    ∴AD=
    ∵AD=AF,
    ∴点F和点P横坐标为
    ∴点P纵坐标为
    ∴点P在y1=(x>0)的图象上
    四.抛物线与x轴的交点(共1小题)
    5.(2018•泰州)平面直角坐标系xOy中,二次函数y=x2﹣2mx+m2+2m+2的图象与x轴有两个交点.
    (1)当m=﹣2时,求二次函数的图象与x轴交点的坐标;
    (2)过点P(0,m﹣1)作直线l⊥y轴,二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上),求m的范围;
    (3)在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求△ABO的面积最大时m的值.

    【解答】解:(1)当m=﹣2时,抛物线解析式为:y=x2+4x+2
    令y=0,则x2+4x+2=0
    解得x1=﹣2+,x2=﹣2﹣
    抛物线与x轴交点坐标为:(﹣2+,0)(﹣2﹣,0)
    (2)∵y=x2﹣2mx+m2+2m+2=(x﹣m)2+2m+2
    ∴抛物线顶点坐标为A(m,2m+2)
    ∵二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上)
    ∴当直线l在x轴上方时

    不等式无解
    当直线l在x轴下方时

    解得﹣3<m<﹣1
    (3)由(1)
    点A在点B上方,则AB=(2m+2)﹣(m﹣1)=m+3
    △ABO的面积S=(m+3)(﹣m)=﹣
    ∵﹣
    ∴当m=﹣时,S最大=
    五.二次函数综合题(共2小题)
    6.(2022•泰州)如图,二次函数y1=x2+mx+1的图像与y轴相交于点A,与反比例函数y2=(x>0)的图像相交于点B(3,1).
    (1)求这两个函数的表达式;
    (2)当y1随x的增大而增大且y1<y2时,直接写出x的取值范围;
    (3)平行于x轴的直线l与函数y1的图像相交于点C、D(点C在点D的左边),与函数y2的图像相交于点E.若△ACE与△BDE的面积相等,求点E的坐标.

    【解答】解:(1)∵二次函数y1=x2+mx+1的图像与y轴相交于点A,与反比例函数y2=(x>0)的图像相交于点B(3,1),
    ∴32+3m+1=1,=1,
    解得m=﹣3,k=3,
    ∴二次函数的解析式为y1=x2﹣3x+1,反比例函数的解析式为y2=(x>0);
    (2)∵二次函数的解析式为y1=x2﹣3x+1,
    ∴对称轴为直线x=,
    由图象知,当y1随x的增大而增大且y1<y2时,≤x<3;
    (3)由题意作图如下:

    ∵当x=0时,y1=1,
    ∴A(0,1),
    ∵B(3,1),
    ∴△ACE的CE边上的高与△BDE的DE边上的高相等,
    ∵△ACE与△BDE的面积相等,
    ∴CE=DE,
    即E点是二次函数的对称轴与反比例函数的交点,
    当x=时,y2=2,
    ∴E(,2).
    7.(2020•泰州)如图,二次函数y1=a(x﹣m)2+n,y2=6ax2+n(a<0,m>0,n>0)的图象分别为C1、C2,C1交y轴于点P,点A在C1上,且位于y轴右侧,直线PA与C2在y轴左侧的交点为B.

    (1)若P点的坐标为(0,2),C1的顶点坐标为(2,4),求a的值;
    (2)设直线PA与y轴所夹的角为α.
    ①当α=45°,且A为C1的顶点时,求am的值;
    ②若α=90°,试说明:当a、m、n各自取不同的值时,的值不变;
    (3)若PA=2PB,试判断点A是否为C1的顶点?请说明理由.
    【解答】解:(1)由题意m=2,n=4,
    ∴y1=a(x﹣2)2+4,
    把(0,2)代入得到a=﹣.

    (2)①如图1中,过点A作AN⊥x轴于N,过点P作PM⊥AN于M.

    ∵y1=a(x﹣m)2+n=ax2﹣2amx+am2+n,
    ∴P(0,am2+n),
    ∵A(m,n),
    ∴PM=m,AN=n,
    ∵∠APM=45°,
    ∴AM=PM=m,
    ∴m+am2+n=n,
    ∵m>0,
    ∴am=﹣1.

    ②如图2中,由题意AB⊥y轴,

    ∵P(0,am2+n),
    当y=am2+n时,am2+n=6ax2+n,
    解得x=±m,
    ∴B(﹣m,am2+n),
    ∴PB=m,
    ∵AP=2m,
    ∴==2.

    (3)如图3中,过点A作AH⊥x轴于H,过点P作PK⊥AH于K,过点B作BE⊥KP交KP的延长线于E.

    设B(b,6ab2+n),
    ∵PA=2PB,
    ∴点A的横坐标为﹣2b,
    ∴A[﹣2b,a(﹣2b﹣m)2+n],
    ∵BE∥AK,
    ∴==,
    ∴AK=2BE,
    ∴a(﹣2b﹣m)2+n﹣am2﹣n=2(am2+n﹣6ab2﹣n),
    整理得:m2﹣2bm﹣8b2=0,
    ∴(m﹣4b)(m+2b)=0,
    ∵m﹣4b>0,
    ∴m+2b=0,
    ∴m=﹣2b,
    ∴A(m,n),
    ∴点A是抛物线C1的顶点.
    六.全等三角形的应用(共1小题)
    8.(2018•泰州)对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)
    (1)根据以上操作和发现,求的值;
    (2)将该矩形纸片展开.
    ①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;
    ②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)

    【解答】解:(1)由图①,可得∠BCE=∠BCD=45°,
    又∵∠B=90°,
    ∴△BCE是等腰直角三角形,
    ∴=cos45°=,即CE=BC,
    由图②,可得CE=CD,而AD=BC,
    ∴CD=AD,
    ∴=;

    (2)①设AD=BC=a,则AB=CD=a,BE=a,
    ∴AE=(﹣1)a,
    如图③,连接EH,则∠CEH=∠CDH=90°,
    ∵∠BEC=45°,∠A=90°,
    ∴∠AEH=45°=∠AHE,
    ∴AH=AE=(﹣1)a,
    设AP=x,则BP=a﹣x,由翻折可得,PH=PC,即PH2=PC2,
    ∴AH2+AP2=BP2+BC2,
    即[(﹣1)a]2+x2=(a﹣x)2+a2,
    解得x=a,即AP=BC,
    又∵PH=CP,∠A=∠B=90°,
    ∴Rt△APH≌Rt△BCP(HL),
    ∴∠APH=∠BCP,
    又∵Rt△BCP中,∠BCP+∠BPC=90°,
    ∴∠APH+∠BPC=90°,
    ∴∠CPH=90°;
    ②折法:如图,由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,
    故沿着过D的直线翻折,使点A落在CD边上,此时折痕与AB的交点即为P;

    折法:如图,由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,
    由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,
    又∵∠DCH=∠ECH,
    ∴∠BCP=∠PCE,即CP平分∠BCE,
    故沿着过点C的直线折叠,使点B落在CE上,此时,折痕与AB的交点即为P.

    七.三角形综合题(共1小题)
    9.(2022•泰州)已知:△ABC中,D为BC边上的一点.
    (1)如图①,过点D作DE∥AB交AC边于点E.若AB=5,BD=9,DC=6,求DE的长;
    (2)在图②中,用无刻度的直尺和圆规在AC边上作点F,使∠DFA=∠A;(保留作图痕迹,不要求写作法)
    (3)如图③,点F在AC边上,连接BF、DF.若∠DFA=∠A,△FBC的面积等于CD•AB,以FD为半径作⊙F,试判断直线BC与⊙F的位置关系,并说明理由.


    【解答】解:(1)如图①中,∵DE∥AB,
    ∴△CDE∽△CBA,
    ∴=,
    ∴=,
    ∴DE=2;

    (2)如图②中,点F即为所求.


    (3)结论:直线BC与以FD为半径作⊙F相切.
    理由:作BR∥CF交FD的延长线于点R,连接CR.

    ∵AF∥BR,∠A=∠AFR,
    ∴四边形ABRF是等腰梯形,
    ∴AB=FR,
    ∵CF∥BR,
    ∴S△CFB=S△CFR=•AB•CD=•FR•CD,
    ∴CD⊥DF,
    ∴直线BC与以FD为半径作⊙F相切.
    八.四边形综合题(共2小题)
    10.(2020•泰州)如图,正方形ABCD的边长为6,M为AB的中点,△MBE为等边三角形,过点E作ME的垂线分别与边AD、BC相交于点F、G,点P、Q分别在线段EF、BC上运动,且满足∠PMQ=60°,连接PQ.
    (1)求证:△MEP≌△MBQ.
    (2)当点Q在线段GC上时,试判断PF+GQ的值是否变化?如果不变,求出这个值,如果变化,请说明理由.
    (3)设∠QMB=α,点B关于QM的对称点为B',若点B'落在△MPQ的内部,试写出α的范围,并说明理由.

    【解答】证明:(1)∵正方形ABCD的边长为6,M为AB的中点,
    ∴∠A=∠ABC=90°,AB=BC=6,AM=BM=3,
    ∵△MBE是等边三角形,
    ∴MB=ME=BE,∠BME=∠PMQ=60°,
    ∴∠BMQ=∠PME,
    又∵∠ABC=∠MEP=90°,
    ∴△MBQ≌△MEP(ASA);
    (2)PF+GQ的值不变,
    理由如下:如图1,连接MG,过点F作FH⊥BC于H,

    ∵ME=MB,MG=MG,
    ∴Rt△MBG≌Rt△MEG(HL),
    ∴BG=GE,∠BMG=∠EMG=30°,∠BGM=∠EGM,
    ∴MB=BG=3,∠BGM=∠EGM=60°,
    ∴GE=,∠FGH=60°,
    ∵FH⊥BC,∠C=∠D=90°,
    ∴四边形DCHF是矩形,
    ∴FH=CD=6,
    ∵sin∠FGH===,
    ∴FG=4,
    ∵△MBQ≌△MEP,
    ∴BQ=PE,
    ∴PE=BQ=BG+GQ,
    ∵FG=EG+PE+FP=EG+BG+GQ+PF=2+GQ+PF,
    ∴GQ+PF=2;
    (3)如图2,当点B'落在PQ上时,

    ∵△MBQ≌△MEP,
    ∴MQ=MP,
    ∵∠QMP=60°,
    ∴△MPQ是等边三角形,
    当点B'落在PQ上时,点B关于QM的对称点为B',
    ∴△MBQ≌△MB'Q,
    ∴∠MBQ=∠MB'Q=90°
    ∴∠QME=30°
    ∴点B'与点E重合,点Q与点G重合,
    ∴∠QMB=∠QMB'=α=30°,
    如图3,当点B'落在MP上时,

    同理可求:∠QMB=∠QMB'=α=60°,
    ∴当30°<α<60°时,点B'落在△MPQ的内部.
    11.(2019•泰州)如图,线段AB=8,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE与线段AB相交于点F(点F与点A、B不重合).
    (1)求证:△AEP≌△CEP;
    (2)判断CF与AB的位置关系,并说明理由;
    (3)求△AEF的周长.

    【解答】解:(1)证明:∵四边形APCD正方形,
    ∴DP平分∠APC,PC=PA,
    ∴∠APD=∠CPD=45°,
    ∴△AEP≌△CEP(SAS);
    (2)CF⊥AB,理由如下:
    ∵△AEP≌△CEP,
    ∴∠EAP=∠ECP,
    ∵∠EAP=∠BAP,
    ∴∠BAP=∠FCP,
    ∵∠FCP+∠CMP=90°,∠AMF=∠CMP,
    ∴∠AMF+∠PAB=90°,
    ∴∠AFM=90°,
    ∴CF⊥AB;
    (3)过点 C 作CN⊥PB.

    ∵CF⊥AB,BG⊥AB,
    ∴FC∥BN,
    ∴∠CPN=∠PCF=∠EAP=∠PAB,
    又AP=CP,
    ∴△PCN≌△APB(AAS),
    ∴CN=PB=BF,PN=AB,
    ∵△AEP≌△CEP,
    ∴AE=CE,
    ∴AE+EF+AF
    =CE+EF+AF
    =BN+AF
    =PN+PB+AF
    =AB+CN+AF
    =AB+BF+AF
    =2AB
    =16.
    九.直线与圆的位置关系(共1小题)
    12.(2018•泰州)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.
    (1)试判断DE与⊙O的位置关系,并说明理由;
    (2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.

    【解答】解:(1)DE与⊙O相切,
    理由:连接DO,
    ∵DO=BO,
    ∴∠ODB=∠OBD,
    ∵∠ABC的平分线交⊙O于点D,
    ∴∠EBD=∠DBO,
    ∴∠EBD=∠BDO,
    ∴DO∥BE,
    ∵DE⊥BC,
    ∴∠DEB=∠EDO=90°,
    ∴DE与⊙O相切;

    (2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,
    ∴DE=DF=3,
    ∵BE=3,
    ∴BD==6,
    ∵sin∠DBF==,
    ∴∠DBA=30°,
    ∴∠DOF=60°,
    ∴sin60°===,
    ∴DO=2,
    则FO=,
    故图中阴影部分的面积为:﹣××3=2π﹣.

    一十.圆的综合题(共1小题)
    13.(2021•泰州)如图,在⊙O中,AB为直径,P为AB上一点,PA=1,PB=m(m为常数,且m>0).过点P的弦CD⊥AB,Q为上一动点(与点B不重合),AH⊥QD,垂足为H.连接AD、BQ.
    (1)若m=3.
    ①求证:∠OAD=60°;
    ②求的值;
    (2)用含m的代数式表示,请直接写出结果;
    (3)存在一个大小确定的⊙O,对于点Q的任意位置,都有BQ2﹣2DH2+PB2的值是一个定值,求此时∠Q的度数.

    【解答】解:(1)①连接OD,如图:

    ∵m=3即PB=3,AP=1,
    ∴AB=AP+PB=4,
    ∴OA=OD=AB=2,
    ∴OP=OA﹣AP=1=AP,
    ∴P是OA中点,
    又CD⊥AB,
    ∴CD是OA的垂直平分线,
    ∴AD=OD=OA=2,即△AOD是等边三角形,
    ∴∠OAD=60°;
    ②连接AQ,如图:

    ∵AB是⊙O直径,
    ∴∠AQB=90°,
    ∵AH⊥DQ,
    ∴∠AHD=90°,
    ∴∠AQB=∠AHD,
    ∵=,
    ∴∠ADH=∠ABQ,
    ∴△ADH∽△ABQ,
    ∴=,
    由①知:AB=4,AD=2,
    ∴=2;
    (2)连接AQ、BD,如图:

    ∵AB是⊙O直径,
    ∴∠ADB=90°,
    ∴∠ADB=∠APD,
    又∠PAD=∠DAB,
    ∴△APD∽△ADB,
    ∴=,
    ∵AP=1,PB=m,
    ∴AB=1+m,=,
    ∴AD=,
    与(1)中②同理,可得:=,
    ∴==;
    (3)由(2)得=,
    ∴BQ=•DH,即BQ2=(1+m)•DH2,
    ∴BQ2﹣2DH2+PB2=(1+m)•DH2﹣2DH2+m2=(m﹣1)•DH2+m2,
    若BQ2﹣2DH2+PB2是定值,则(m﹣1)•DH2+m2的值与DH无关,
    ∴当m=1时,BQ2﹣2DH2+PB2的定值为1,此时P与O重合,如图:

    ∵AB⊥CD,OA=OD=1,
    ∴△AOD是等腰直角三角形,
    ∴∠OAD=45°,
    ∵=,
    ∴∠BQD=45°,
    故存在半径为1的⊙O,对Q的任意位置,都有BQ2﹣2DH2+PB2是定值1,此时∠BQD为45°.
    一十一.解直角三角形的应用-坡度坡角问题(共1小题)
    14.(2018•泰州)日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L:(H﹣H1),其中L为楼间水平距离,H为南侧楼房高度,H1为北侧楼房底层窗台至地面高度.

    如图②,山坡EF朝北,EF长为15m,坡度为i=1:0.75,山坡顶部平地EM上有一高为22.5m的楼房AB,底部A到E点的距离为4m.
    (1)求山坡EF的水平宽度FH;
    (2)欲在AB楼正北侧山脚的平地FN上建一楼房CD,已知该楼底层窗台P处至地面C处的高度为0.9m,要使该楼的日照间距系数不低于1.25,底部C距F处至少多远?
    【解答】解:(1)在Rt△EFH中,∵∠H=90°,
    ∴tan∠EFH=i=1:0.75==,
    设EH=4xm,则FH=3xm,
    ∴EF==5xm,
    ∵EF=15m,
    ∴5x=15m,x=3,
    ∴FH=3x=9m.
    即山坡EF的水平宽度FH为9m;

    (2)∵L=CF+FH+EA=CF+9+4=CF+13,
    H=AB+EH=22.5+12=34.5,H1=0.9,
    ∴日照间距系数=L:(H﹣H1)==,
    ∵该楼的日照间距系数不低于1.25,
    ∴≥1.25,
    ∴CF≥29.
    答:要使该楼的日照间距系数不低于1.25,底部C距F处29m远.

    相关试卷

    江苏省泰州市五年(2018-2022)中考数学真题分层分类汇编:02填空题知识点分类:

    这是一份江苏省泰州市五年(2018-2022)中考数学真题分层分类汇编:02填空题知识点分类,共30页。试卷主要包含了=   ,9的平方根等于   ,8的立方根等于   ,3=   等内容,欢迎下载使用。

    江苏省泰州市五年(2018-2022)中考数学真题分层分类汇编:03解答题(基础题)知识点分类:

    这是一份江苏省泰州市五年(2018-2022)中考数学真题分层分类汇编:03解答题(基础题)知识点分类,共18页。试卷主要包含了×;,计算,分解因式,﹣1﹣sin60°;,的函数关系等内容,欢迎下载使用。

    江苏省泰州市五年(2018-2022)中考数学真题分层分类汇编:04解答题(中档题)知识点分类:

    这是一份江苏省泰州市五年(2018-2022)中考数学真题分层分类汇编:04解答题(中档题)知识点分类,共25页。试卷主要包含了﹣2;,图象的顶点在y轴右侧等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map