2021-2022学年陕西省岐山县市级名校中考考前最后一卷数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是( )
A.2 B.3 C.5 D.6
2.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,则下列结论:
①a、b同号;
②当x=1和x=3时,函数值相等;
③4a+b=1;
④当y=﹣2时,x的值只能取1;
⑤当﹣1<x<5时,y<1.
其中,正确的有( )
A.2个 B.3个 C.4个 D.5个
3.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:
选手
1
2
3
4
5
6
7
8
9
10
时间(min)
129
136
140
145
146
148
154
158
165
175
由此所得的以下推断不正确的是( )
A.这组样本数据的平均数超过130
B.这组样本数据的中位数是147
C.在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差
D.在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好
4.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有( )
A.1对 B.2对 C.3对 D.4对
5.已知正方形ABCD的边长为4cm,动点P从A出发,沿AD边以1cm/s的速度运动,动点Q从B出发,沿BC,CD边以2cm/s的速度运动,点P,Q同时出发,运动到点D均停止运动,设运动时间为x(秒),△BPQ的面积为y(cm2),则y与x之间的函数图象大致是( )
A. B. C. D.
6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
成绩
人数
2
3
2
3
4
1
则这些运动员成绩的中位数、众数分别为
A.、 B.、 C.、 D.、
7.下列计算正确的是( )
A.x2+x3=x5 B.x2•x3=x5 C.(﹣x2)3=x8 D.x6÷x2=x3
8.不等式组的解集是 ( )
A.x>-1 B.x>3
C.-1<x<3 D.x<3
9.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()
A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1
10.小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:
尺码/cm
21.5
22.0
22.5
23.0
23.5
人数
2
4
3
8
3
学校附近的商店经理根据统计表决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用的统计量是( )
A.平均数 B.加权平均数 C.众数 D.中位数
11.下列运算正确的是( )
A.(﹣2a)3=﹣6a3 B.﹣3a2•4a3=﹣12a5
C.﹣3a(2﹣a)=6a﹣3a2 D.2a3﹣a2=2a
12.如图,中,,,将绕点逆时针旋转得到,使得,延长交于点,则线段的长为( )
A.4 B.5 C.6 D.7
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知一粒米的质量是1.111121千克,这个数字用科学记数法表示为__________.
14.不等式组的解集为,则的取值范围为_____.
15.如图是一个立体图形的三种视图,则这个立体图形的体积(结果保留π)为______________.
16.关于的方程有两个不相等的实数根,那么的取值范围是__________.
17.如图,在平面直角坐标系中,已知点A(﹣4,0)、B(0,3),对△AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是_____,第(2018)个三角形的直角顶点的坐标是______.
18.如图,数轴上点A表示的数为a,化简:a_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.
如图1,当点E在边BC上时,求证DE=EB;如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=1.求CG的长.
20.(6分)如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.
求证:△AED≌△EBC;当AB=6时,求CD的长.
21.(6分)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.
(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是______;
(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;
(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.
22.(8分)校园手机现象已经受到社会的广泛关注.某校的一个兴趣小组对“是否赞成中学生带手机进校园”的问题在该校校园内进行了随机调查.并将调查数据作出如下不完整的整理;
看法
频数
频率
赞成
5
无所谓
0.1
反对
40
0.8
(1)本次调查共调查了 人;(直接填空)请把整理的不完整图表补充完整;若该校有3000名学生,请您估计该校持“反对”态度的学生人数.
23.(8分)先化简代数式,再从﹣1,0,3中选择一个合适的a的值代入求值.
24.(10分)如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.
(1)求证:BC是⊙O的切线;
(2)已知AD=3,CD=2,求BC的长.
25.(10分)如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t.
⑴用含t的代数式表示:AP= ,AQ= .
⑵当以A,P,Q为顶点的三角形与△ABC相似时,求运动时间是多少?
26.(12分)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.
(1)求sinB的值;
(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.
27.(12分)如图所示,在坡角为30°的山坡上有一竖立的旗杆AB,其正前方矗立一墙,当阳光与水平线成45°角时,测得旗杆AB落在坡上的影子BD的长为8米,落在墙上的影子CD的长为6米,求旗杆AB的高(结果保留根号).
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案选C.
考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.
2、A
【解析】
根据二次函数的性质和图象可以判断题目中各个小题是否成立.
【详解】
由函数图象可得,
a>1,b<1,即a、b异号,故①错误,
x=-1和x=5时,函数值相等,故②错误,
∵-=2,得4a+b=1,故③正确,
由图象可得,当y=-2时,x=1或x=4,故④错误,
由图象可得,当-1<x<5时,y<1,故⑤正确,
故选A.
【点睛】
考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.
3、C
【解析】
分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解.
详解:平均数=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故这组样本数据的平均数超过130,A正确,C错误;因为表中是按从小到大的顺序排列的,一共10名选手,中位数为第五位和第六位的平均数,故中位数是(146+148)÷2=147(min),故B正确,D正确.故选C.
点睛:本题考查的是平均数和中位数的定义.要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位.
4、C
【解析】
∵∠ACB=90°,CD⊥AB,
∴△ABC∽△ACD,
△ACD∽CBD,
△ABC∽CBD,
所以有三对相似三角形.
故选C.
5、B
【解析】
根据题意,Q点分别在BC、CD上运动时,形成不同的三角形,分别用x表示即可.
【详解】
(1)当0≤x≤2时,
BQ=2x
当2≤x≤4时,如下图
由上可知
故选:B.
【点睛】
本题是双动点问题,解答时要注意讨论动点在临界两侧时形成的不同图形,并要根据图形列出函数关系式.
6、C
【解析】
根据中位数和众数的概念进行求解.
【详解】
解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65, 1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80
众数为:1.75;
中位数为:1.1.
故选C.
【点睛】
本题考查1.中位数;2.众数,理解概念是解题关键.
7、B
【解析】
分析:直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.
详解:A、不是同类项,无法计算,故此选项错误;
B、 正确;
C、 故此选项错误;
D、 故此选项错误;
故选:B.
点睛:此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.
8、B
【解析】
根据解不等式组的方法可以求得原不等式组的解集.
【详解】
,
解不等式①,得x>-1,
解不等式②,得x>1,
由①②可得,x>1,
故原不等式组的解集是x>1.
故选B.
【点睛】
本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.
9、B
【解析】
∵观察可知:左边三角形的数字规律为:1,2,…,n,
右边三角形的数字规律为:2,,…,,
下边三角形的数字规律为:1+2,,…,,
∴最后一个三角形中y与n之间的关系式是y=2n+n.
故选B.
【点睛】
考点:规律型:数字的变化类.
10、C
【解析】
根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.
【详解】
解:根据商店经理统计表决定本月多进尺码为23.0cm的女式运动鞋,就说明穿23.0cm的女式运动鞋的最多,
则商店经理的这一决定应用的统计量是这组数据的众数.
故选:C.
【点睛】
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.
11、B
【解析】
先根据同底数幂的乘法法则进行运算即可。
【详解】
A.;故本选项错误;
B. ﹣3a2•4a3=﹣12a5; 故本选项正确;
C.;故本选项错误;
D. 不是同类项不能合并; 故本选项错误;
故选B.
【点睛】
先根据同底数幂的乘法法则, 幂的乘方, 积的乘方, 合并同类项分别求出每个式子的值, 再判断即可.
12、B
【解析】
先利用已知证明,从而得出,求出BD的长度,最后利用求解即可.
【详解】
故选:B.
【点睛】
本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×11-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.
【详解】
解:1.111121=2.1×11-2.
故答案为:2.1×11-2.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×11-n,其中1≤|a|<11,n由原数左边起第一个不为零的数字前面的1的个数所决定.
14、k≥1
【解析】
解不等式2x+9>6x+1可得x<2,解不等式x-k<1,可得x<k+1,由于x<2,可知k+1≥2,解得k≥1.
故答案为k≥1.
15、250
【解析】
从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱.由三视图可得圆柱的半径和高,易求体积.
【详解】
该立体图形为圆柱,
∵圆柱的底面半径r=5,高h=10,
∴圆柱的体积V=πr2h=π×52×10=250π(立方单位).
答:立体图形的体积为250π立方单位.
故答案为250π.
【点睛】
考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积×高.
16、且
【解析】
分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>1且m≠1,求出m的取值范围即可.
详解:∵一元二次方程mx2-2x+3=1有两个不相等的实数根,
∴△>1且m≠1,
∴4-12m>1且m≠1,
∴m<且m≠1,
故答案为:m<且m≠1.
点睛:本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)根的判别式△=b2-4ac.当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.
17、(16,) (8068,)
【解析】
利用勾股定理列式求出AB的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(2018)个三角形的直角顶点到原点O的距离,然后写出坐标即可.
【详解】
∵点A(﹣4,0),B(0,3),
∴OA=4,OB=3,
∴AB==5,
∴第(2)个三角形的直角顶点的坐标是(4,);
∵5÷3=1余2,
∴第(5)个三角形的直角顶点的坐标是(16,),
∵2018÷3=672余2,
∴第(2018)个三角形是第672组的第二个直角三角形,
其直角顶点与第672组的第二个直角三角形顶点重合,
∴第(2018)个三角形的直角顶点的坐标是(8068,).
故答案为:(16,);(8068,)
【点睛】
本题考查了坐标与图形变化-旋转,解题的关键是根据题意找出每3个三角形为一个循环组依次循环.
18、1.
【解析】
直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.
【详解】
由数轴可得:0<a<1,
则a+=a+=a+(1﹣a)=1.
故答案为1.
【点睛】
本题主要考查了二次根式的性质与化简,正确得出a的取值范围是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2.
【解析】
(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE;
(2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;
(1)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.
【详解】
(1)∵△CDE是等边三角形,
∴∠CED=60°,
∴∠EDB=60°﹣∠B=10°,
∴∠EDB=∠B,
∴DE=EB;
(2) ED=EB, 理由如下:
取AB的中点O,连接CO、EO,
∵∠ACB=90°,∠ABC=10°,
∴∠A=60°,OC=OA,
∴△ACO为等边三角形,
∴CA=CO,
∵△CDE是等边三角形,
∴∠ACD=∠OCE,
∴△ACD≌△OCE,
∴∠COE=∠A=60°,
∴∠BOE=60°,
∴△COE≌△BOE,
∴EC=EB,
∴ED=EB;
(1)、取AB的中点O,连接CO、EO、EB, 由(2)得△ACD≌△OCE,
∴∠COE=∠A=60°,
∴∠BOE=60°,△COE≌△BOE,
∴EC=EB,
∴ED=EB,
∵EH⊥AB,
∴DH=BH=1,
∵GE∥AB,
∴∠G=180°﹣∠A=120°,
∴△CEG≌△DCO,
∴CG=OD,
设CG=a,则AG=5a,OD=a,
∴AC=OC=4a,
∵OC=OB,
∴4a=a+1+1,
解得,a=2,
即CG=2.
20、(1)证明见解析;(2)CD =3
【解析】
分析: (1)根据二直线平行同位角相等得出∠A=∠BEC,根据中点的定义得出AE=BE,然后由ASA判断出△AED≌△EBC;
(2)根据全等三角形对应边相等得出AD=EC,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD是平行四边形,根据平行四边形的对边相等得出答案.
详解:
(1)证明 :∵AD∥EC
∴∠A=∠BEC
∵E是AB中点,
∴AE=BE
∵∠AED=∠B
∴△AED≌△EBC
(2)解 :∵△AED≌△EBC
∴AD=EC
∵AD∥EC
∴四边形AECD是平行四边形
∴CD=AE
∵AB=6
∴CD= AB=3
点睛: 本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
21、(1)CH=AB.;(2)成立,证明见解析;(3)
【解析】
(1)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.
(2)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.
(3)首先根据三角形三边的关系,可得CK<AC+AK,据此判断出当C、A、K三点共线时,CK的长最大;然后根据全等三角形判定的方法,判断出△DFK≌△DEH,即可判断出DK=DH,再根据全等三角形判定的方法,判断出△DAK≌△DCH,即可判断出AK=CH=AB;最后根据CK=AC+AK=AC+AB,求出线段CK长的最大值是多少即可.
【详解】
解:(1)如图1,连接BE,
,
在正方形ABCD中,
AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,
∵点E是DC的中点,DE=EC,
∴点F是AD的中点,
∴AF=FD,
∴EC=AF,
在△ABF和△CBE中,
∴△ABF≌△CBE,
∴∠1=∠2,
∵EH⊥BF,∠BCE=90°,
∴C、H两点都在以BE为直径的圆上,
∴∠3=∠2,
∴∠1=∠3,
∵∠3+∠4=90°,∠1+∠HBC=90°,
∴∠4=∠HBC,
∴CH=BC,
又∵AB=BC,
∴CH=AB.
(2)当点E在DC边上且不是DC的中点时,(1)中的结论CH=AB仍然成立.
如图2,连接BE,
,
在正方形ABCD中,
AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,
∵AD=CD,DE=DF,
∴AF=CE,
在△ABF和△CBE中,
∴△ABF≌△CBE,
∴∠1=∠2,
∵EH⊥BF,∠BCE=90°,
∴C、H两点都在以BE为直径的圆上,
∴∠3=∠2,
∴∠1=∠3,
∵∠3+∠4=90°,∠1+∠HBC=90°,
∴∠4=∠HBC,
∴CH=BC,
又∵AB=BC,
∴CH=AB.
(3)如图3,
,
∵CK≤AC+AK,
∴当C、A、K三点共线时,CK的长最大,
∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,
∴∠KDF=∠HDE,
∵∠DEH+∠DFH=360°-∠ADC-∠EHF=360°-90°-90°=180°,∠DFK+∠DFH=180°,
∴∠DFK=∠DEH,
在△DFK和△DEH中,
∴△DFK≌△DEH,
∴DK=DH,
在△DAK和△DCH中,
∴△DAK≌△DCH,
∴AK=CH
又∵CH=AB,
∴AK=CH=AB,
∵AB=3,
∴AK=3,AC=3,
∴CK=AC+AK=AC+AB=,
即线段CK长的最大值是.
考点:四边形综合题.
22、(1)50;(2)见解析;(3)2400.
【解析】
(1)用反对的频数除以反对的频率得到调查的总人数;
(2)求无所谓的人数和赞成的频率即可把整理的不完整图表补充完整;
(3)根据题意列式计算即可.
【详解】
解:(1)观察统计表知道:反对的频数为40,频率为0.8,
故调查的人数为:40÷0.8=50人;
故答案为:50;
(2)无所谓的频数为:50﹣5﹣40=5人,
赞成的频率为:1﹣0.1﹣0.8=0.1;
看法
频数
频率
赞成
5
0.1
无所谓
5
0.1
反对
40
0.8
统计图为:
(3)0.8×3000=2400人,
答:该校持“反对”态度的学生人数是2400人.
【点睛】
本题考查的是条形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
23、,1
【解析】
先通分得到,再根据平方差公式和完全平方公式得到,化简后代入a=3,计算即可得到答案.
【详解】
原式===,
当a=3时(a≠﹣1,0),原式=1.
【点睛】
本题考查代数式的化简、平方差公式和完全平方公式,解题的关键是掌握代数式的化简、平方差公式和完全平方公式.
24、 (1)证明见解析
(2)BC=
【解析】
(1)AB是⊙O的直径,得∠ADB=90°,从而得出∠BAD=∠DBC,即∠ABC=90°,即可证明BC是⊙O的切线;
(2)可证明△ABC∽△BDC,则,即可得出BC=.
【详解】
(1)∵AB是⊙O的切直径,
∴∠ADB=90°,
又∵∠BAD=∠BED,∠BED=∠DBC,
∴∠BAD=∠DBC,
∴∠BAD+∠ABD=∠DBC+∠ABD=90°,
∴∠ABC=90°,
∴BC是⊙O的切线;
(2)解:∵∠BAD=∠DBC,∠C=∠C,
∴△ABC∽△BDC,
∴,即BC2=AC•CD=(AD+CD)•CD=10,
∴BC=.
考点:1.切线的判定;2.相似三角形的判定和性质.
25、(1)AP=2t,AQ=16﹣3t;(2)运动时间为秒或1秒.
【解析】
(1)根据路程=速度时间,即可表示出AP,AQ的长度.
(2)此题应分两种情况讨论.(1)当△APQ∽△ABC时;(2)当△APQ∽△ACB时.利用相似三角形的性质求解即可.
【详解】
(1)AP=2t,AQ=16﹣3t.
(2)∵∠PAQ=∠BAC,
∴当时,△APQ∽△ABC,即,解得
当时,△APQ∽△ACB,即,解得t=1.
∴运动时间为秒或1秒.
【点睛】
考查相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.注意不要漏解.
26、(1)sinB=;(2)DE=1.
【解析】
(1)在Rt△ABD中,利用勾股定理求出AB,再根据sinB=计算即可;
(2)由EF∥AD,BE=2AE,可得,求出EF、DF即可利用勾股定理解决问题;
【详解】
(1)在Rt△ABD中,∵BD=DC=9,AD=6,
∴AB==3,∴sinB==.
(2)∵EF∥AD,BE=2AE,∴,∴,∴EF=4,BF=6,
∴DF=3,在Rt△DEF中,DE==1.
考点:1.解直角三角形的应用;2.平行线分线段成比例定理.
27、旗杆AB的高为(4+1)m.
【解析】
试题分析:过点C作CE⊥AB于E,过点B作BF⊥CD于F.在Rt△BFD中,分别求出DF、BF的长度.在Rt△ACE中,求出AE、CE的长度,继而可求得AB的长度.
试题解析:解:过点C作CE⊥AB于E,过点B作BF⊥CD于F,过点B作BF⊥CD于F.
在Rt△BFD中,∵∠DBF=30°,sin∠DBF==,cos∠DBF==.
∵BD=8,∴DF=4,BF=.
∵AB∥CD,CE⊥AB,BF⊥CD,∴四边形BFCE为矩形,∴BF=CE=4,CF=BE=CD﹣DF=1.
在Rt△ACE中,∠ACE=45°,∴AE=CE=4,∴AB=4+1(m).
答:旗杆AB的高为(4+1)m.
宁波市鄞州区市级名校2021-2022学年中考数学考前最后一卷含解析: 这是一份宁波市鄞州区市级名校2021-2022学年中考数学考前最后一卷含解析,共20页。
2022届安徽合肥市市级名校中考数学考前最后一卷含解析: 这是一份2022届安徽合肥市市级名校中考数学考前最后一卷含解析,共19页。试卷主要包含了关于x的方程等内容,欢迎下载使用。
2021-2022学年拉萨市市级名校中考数学考前最后一卷含解析: 这是一份2021-2022学年拉萨市市级名校中考数学考前最后一卷含解析,共22页。试卷主要包含了函数的图象上有两点,,若,则,解分式方程﹣3=时,去分母可得等内容,欢迎下载使用。