年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年上海市外国语大附属外国语校中考数学考试模拟冲刺卷含解析

    2021-2022学年上海市外国语大附属外国语校中考数学考试模拟冲刺卷含解析第1页
    2021-2022学年上海市外国语大附属外国语校中考数学考试模拟冲刺卷含解析第2页
    2021-2022学年上海市外国语大附属外国语校中考数学考试模拟冲刺卷含解析第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年上海市外国语大附属外国语校中考数学考试模拟冲刺卷含解析

    展开

    这是一份2021-2022学年上海市外国语大附属外国语校中考数学考试模拟冲刺卷含解析,共27页。试卷主要包含了的相反数是,下列运算正确的是,下列计算正确的是,某校40名学生参加科普知识竞赛等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图是二次函数的图象,有下面四个结论:;;;,其中正确的结论是    

    A. B. C. D.
    2.如图,已知抛物线和直线.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M= y1=y2.
    下列判断: ①当x>2时,M=y2;
    ②当x<0时,x值越大,M值越大;
    ③使得M大于4的x值不存在;
    ④若M=2,则x=" 1" .
    其中正确的有

    A.1个 B.2个 C.3个 D.4个
    3.的相反数是  
    A.4 B. C. D.
    4.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为( )

    A.7 B. C. D.9
    5.下列运算正确的是(  )
    A. B.
    C.a2•a3=a5 D.(2a)3=2a3
    6.如图,共有12个大不相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.现从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的概率是(  )

    A. B. C. D.
    7.如图,小明要测量河内小岛B到河边公路l的距离,在A点测得,在C点测得,又测得米,则小岛B到公路l的距离为( )米.

    A.25 B. C. D.
    8.下列计算正确的是(  )
    A.3a﹣2a=1 B.a2+a5=a7 C.(ab)3=ab3 D.a2•a4=a6
    9.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是(  )
    A. B. C. D.
    10.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在( )

    A.50.5~60.5 分 B.60.5~70.5 分 C.70.5~80.5 分 D.80.5~90.5 分
    11.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,则tan∠BCD的值为(  )

    A. B. C. D.
    12.股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为( )
    A.9.5×106 B.9.5×107 C.9.5×108 D.9.5×109
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.点A(﹣3,y1),B(2,y2),C(3,y3)在抛物线y=2x2﹣4x+c上,则y1,y2,y3的大小关系是_____.
    14.如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,点A在点B左侧,顶点在折线M﹣P﹣N上移动,它们的坐标分别为M(﹣1,4)、P(3,4)、N(3,1).若在抛物线移动过程中,点A横坐标的最小值为﹣3,则a﹣b+c的最小值是_____.

    15.因式分解:a3b﹣ab3=_____.
    16.若a,b互为相反数,则a2﹣b2=_____.
    17.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.

    18.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于__________.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x(x>0)元,让利后的购物金额为y元.
    (1)分别就甲、乙两家商场写出y关于x的函数解析式;
    (2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.
    20.(6分)在“双十二”期间,两个超市开展促销活动,活动方式如下:
    超市:购物金额打9折后,若超过2000元再优惠300元;
    超市:购物金额打8折.
    某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:
    (1)若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;
    (2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)
    21.(6分)解方程:3x2﹣2x﹣2=1.
    22.(8分)如图1,点P是平面直角坐标系中第二象限内的一点,过点P作PA⊥y轴于点A,点P绕点A顺时针旋转60°得到点P',我们称点P'是点P的“旋转对应点”.
    (1)若点P(﹣4,2),则点P的“旋转对应点”P'的坐标为   ;若点P的“旋转对应点”P'的坐标为(﹣5,16)则点P的坐标为   ;若点P(a,b),则点P的“旋转对应点”P'的坐标为   ;
    (2)如图2,点Q是线段AP'上的一点(不与A、P'重合),点Q的“旋转对应点”是点Q',连接PP'、QQ',求证:PP'∥QQ';
    (3)点P与它的“旋转对应点”P'的连线所在的直线经过点(,6),求直线PP'与x轴的交点坐标.

    23.(8分)如图,为的直径,,为上一点,过点作的弦,设.

    (1)若时,求、的度数各是多少?
    (2)当时,是否存在正实数,使弦最短?如果存在,求出的值,如果不存在,说明理由;
    (3)在(1)的条件下,且,求弦的长.
    24.(10分)某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:
    型号
    载客量
    租金单价
    A
    30人/辆
    380元/辆
    B
    20人/辆
    280元/辆
    注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.求y与x的函数解析式,请直接写出x的取值范围;若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?
    25.(10分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求证:△ABC≌△AED;当∠B=140°时,求∠BAE的度数.

    26.(12分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.
    (运用)如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,﹣)两点.
    (1)C(4,),D(4,),E(4,)三点中,点   是点A,B关于直线x=4的等角点;
    (2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:tan=;
    (3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).

    27.(12分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:
    A超市:所有商品均打九折(按标价的90%)销售;
    B超市:买一副羽毛球拍送2个羽毛球.
    设在A超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元).请解答下列问题:分别写出yA、yB与x之间的关系式;若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以;时,由图像可知此时,所以;由对称轴,可得;当时,由图像可知此时,即,将代入可得.
    【详解】
    ①根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以,故①正确.
    ②时,由图像可知此时,即,故②正确.
    ③由对称轴,可得,所以错误,故③错误;
    ④当时,由图像可知此时,即,将③中变形为,代入可得,故④正确.
    故答案选D.
    【点睛】
    本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。
    2、B
    【解析】
    试题分析:∵当y1=y2时,即时,解得:x=0或x=2,
    ∴由函数图象可以得出当x>2时, y2>y1;当0<x<2时,y1>y2;当x<0时, y2>y1.∴①错误.
    ∵当x<0时, -直线的值都随x的增大而增大,
    ∴当x<0时,x值越大,M值越大.∴②正确.
    ∵抛物线的最大值为4,∴M大于4的x值不存在.∴③正确;
    ∵当0<x<2时,y1>y2,∴当M=2时,2x=2,x=1;
    ∵当x>2时,y2>y1,∴当M=2时,,解得(舍去).
    ∴使得M=2的x值是1或.∴④错误.
    综上所述,正确的有②③2个.故选B.
    3、A
    【解析】
    直接利用相反数的定义结合绝对值的定义分析得出答案.
    【详解】
    -1的相反数为1,则1的绝对值是1.
    故选A.
    【点睛】
    本题考查了绝对值和相反数,正确把握相关定义是解题的关键.
    4、B
    【解析】
    作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD=.
    【详解】
    解:作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB.

    ∵CD平分∠ACB,
    ∴∠ACD=∠BCD
    ∴DF=DG,弧AD=弧BD,
    ∴DA=DB.
    ∵∠AFD=∠BGD=90°,
    ∴△AFD≌△BGD,
    ∴AF=BG.
    易证△CDF≌△CDG,
    ∴CF=CG.
    ∵AC=6,BC=8,
    ∴AF=1,(也可以:设AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)
    ∴CF=7,
    ∵△CDF是等腰直角三角形,(这里由CFDG是正方形也可得).
    ∴CD=.
    故选B.
    5、C
    【解析】
    根据算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则逐一计算即可判断.
    【详解】
    解:A、=2,此选项错误;
    B、不能进一步计算,此选项错误;
    C、a2•a3=a5,此选项正确;
    D、(2a)3=8a3,此选项计算错误;
    故选:C.
    【点睛】
    本题主要考查二次根式的加减和幂的运算,解题的关键是掌握算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则.
    6、D
    【解析】
    由正方体表面展开图的形状可知,此正方体还缺一个上盖,故应在图中四块相连的空白正方形中选一块,再根据概率公式解答即可.
    【详解】
    因为共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,所以剩下7个小正方形.
    在其余的7个小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的小正方形有4个,因此先从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是.
    故选D.
    【点睛】
    本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比,掌握概率公式是本题的关键.
    7、B
    【解析】
    解:过点B作BE⊥AD于E.

    设BE=x.
    ∵∠BCD=60°,tan∠BCE,

    在直角△ABE中,AE=,AC=50米,
    则,
    解得
    即小岛B到公路l的距离为,
    故选B.
    8、D
    【解析】
    根据合并同类项法则、积的乘方及同底数幂的乘法的运算法则依次计算后即可解答.
    【详解】
    ∵3a﹣2a=a,∴选项A不正确;
    ∵a2+a5≠a7,∴选项B不正确;
    ∵(ab)3=a3b3,∴选项C不正确;
    ∵a2•a4=a6,∴选项D正确.
    故选D.
    【点睛】
    本题考查了合并同类项法则、积的乘方及同底数幂的乘法的运算法则,熟练运用法则是解决问题的关键.
    9、D
    【解析】
    画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.
    【详解】
    画树状图如下:

    一共有20种情况,其中两个球中至少有一个红球的有14种情况,
    因此两个球中至少有一个红球的概率是:.
    故选:D.
    【点睛】
    此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
    10、C
    【解析】
    分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.
    详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.
    点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    11、D
    【解析】
    先求得∠A=∠BCD,然后根据锐角三角函数的概念求解即可.
    【详解】
    解:∵∠ACB=90°,AB=5,AC=4,
    ∴BC=3,
    在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.
    ∴∠A=∠BCD.
    ∴tan∠BCD=tanA==,
    故选D.
    【点睛】
    本题考查解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.
    12、B
    【解析】
    试题分析: 15000000=1.5×2.故选B.
    考点:科学记数法—表示较大的数

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、y2<y3<y1
    【解析】
    把点的坐标分别代入抛物线解析式可分别求得y1、y2、y3的值,比较可求得答案.
    【详解】
    ∵y=2x2-4x+c,
    ∴当x=-3时,y1=2×(-3)2-4×(-3)+c=30+c,
    当x=2时,y2=2×22-4×2+c=c,
    当x=3时,y3=2×32-4×3+c=6+c,
    ∵c<6+c<30+c,
    ∴y2<y3<y1,
    故答案为y2<y3<y1.
    【点睛】
    本题主要考查二次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键.
    14、﹣1.
    【解析】
    由题意得:当顶点在M处,点A横坐标为-3,可以求出抛物线的a值;当顶点在N处时,y=a-b+c取得最小值,即可求解.
    【详解】
    解:由题意得:当顶点在M处,点A横坐标为-3,
    则抛物线的表达式为:y=a(x+1)2+4,
    将点A坐标(-3,0)代入上式得:0=a(-3+1)2+4,
    解得:a=-1,
    当x=-1时,y=a-b+c,
    顶点在N处时,y=a-b+c取得最小值,
    顶点在N处,抛物线的表达式为:y=-(x-3)2+1,
    当x=-1时,y=a-b+c=-(-1-3)2+1=-1,
    故答案为-1.
    【点睛】
    本题考查的是二次函数知识的综合运用,本题的核心是确定顶点在M、N处函数表达式,其中函数的a值始终不变.
    15、ab(a+b)(a﹣b)
    【解析】
    先提取公因式ab,然后再利用平方差公式分解即可.
    【详解】
    a3b﹣ab3
    =ab(a2﹣b2)
    =ab(a+b)(a﹣b),
    故答案为ab(a+b)(a﹣b).
    【点睛】
    本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.
    16、1
    【解析】
    【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.
    【详解】∵a,b互为相反数,
    ∴a+b=1,
    ∴a2﹣b2=(a+b)(a﹣b)=1,
    故答案为1.
    【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.
    17、1
    【解析】
    主视图、左视图是分别从物体正面、左面看,所得到的图形.
    【详解】
    易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有1个正方体.
    故答案为1.
    18、
    【解析】
    根据同弧或等弧所对的圆周角相等来求解.
    【详解】
    解:∵∠E=∠ABD,
    ∴tan∠AED=tan∠ABD==.
    故选D.
    【点睛】
    本题利用了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念求解.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)y1=0.85x,y2=0.75x+50 (x>200),y2=x (0≤x≤200);(2)x>500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x<500时,到甲商场购物会更省钱.
    【解析】
    (1)根据单价乘以数量,可得函数解析式;
    (2)分类讨论,根据消费的多少,可得不等式,根据解不等式,可得答案.
    【详解】
    (1)甲商场写出y关于x的函数解析式y1=0.85x,
    乙商场写出y关于x的函数解析式y2=200+(x﹣200)×0.75=0.75x+50(x>200),
    即y2=x(0≤x≤200);
    (2)由y1>y2,得0.85x>0.75x+50,
    解得x>500,
    即当x>500时,到乙商场购物会更省钱;
    由y1=y2得0.85x=0.75x+50,
    即x=500时,到两家商场去购物花费一样;
    由y1<y2,得0.85x<0.75x+500,
    解得x<500,
    即当x<500时,到甲商场购物会更省钱;
    综上所述:x>500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x<500时,到甲商场购物会更省钱.
    【点睛】
    本题考查了一次函数的应用,分类讨论是解题关键.
    20、(1)这种篮球的标价为每个50元;(2)见解析
    【解析】
    (1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在A商场多买5个列方程进行求解即可;
    (2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得.
    【详解】
    (1)设这种篮球的标价为每个x元,
    依题意,得,
    解得:x=50,
    经检验:x=50是原方程的解,且符合题意,
    答:这种篮球的标价为每个50元;
    (2)购买100个篮球,最少的费用为3850元,
    单独在A超市一次买100个,则需要费用:100×50×0.9-300=4200元,
    在A超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元,
    单独在B超市购买:100×50×0.8=4000元,
    在A、B两个超市共买100个,
    根据A超市的方案可知在A超市一次购买:=44,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元,
    综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.
    【点睛】
    本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
    21、
    【解析】
    先找出a,b,c,再求出b2-4ac=28,根据公式即可求出答案.
    【详解】
    解:x= =

    ∴原方程的解为.
    【点睛】
    本题考查对解一元二次方程-提公因式法、公式法,因式分解法等知识点的理解和掌握,能熟练地运用公式法解一元二次方程是解此题的关键.
    22、(1)(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)见解析;(3)直线PP'与x轴的交点坐标(﹣,0)
    【解析】
    (1)①当P(-4,2)时,OA=2,PA=4,由旋转知,∠P'AH=30°,进而P'H=P'A=2,AH=P'H=2,即可得出结论;
    ②当P'(-5,16)时,确定出P'A=10,AH=5,由旋转知,PA=PA'=10,OA=OH-AH=16-5,即可得出结论;
    ③当P(a,b)时,同①的方法得,即可得出结论;
    (2)先判断出∠BQQ'=60°,进而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出结论;
    (3)先确定出yPP'=x+3,即可得出结论.
    【详解】
    解:(1)如图1,

    ①当P(﹣4,2)时,
    ∵PA⊥y轴,
    ∴∠PAH=90°,OA=2,PA=4,
    由旋转知,P'A=4,∠PAP'=60°,
    ∴∠P'AH=30°,
    在Rt△P'AH中,P'H=P'A=2,
    ∴AH=P'H=2,
    ∴OH=OA+AH=2+2,
    ∴P'(﹣2,2+2),
    ②当P'(﹣5,16)时,
    在Rt△P'AH中,∠P'AH=30°,P'H=5,
    ∴P'A=10,AH=5,
    由旋转知,PA=PA'=10,OA=OH﹣AH=16﹣5,
    ∴P(﹣10,16﹣5),
    ③当P(a,b)时,同①的方法得,P'(,b﹣a),
    故答案为:(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);
    (2)如图2,过点Q作QB⊥y轴于B,

    ∴∠BQQ'=60°,
    由题意知,△PAP'是等边三角形,
    ∴∠PAP'=∠PP'A=60°,
    ∵QB⊥y轴,PA⊥y轴,
    ∴QB∥PA,
    ∴∠P'QQ'=∠PAP'=60°,
    ∴∠P'QQ'=60°=∠PP'A,
    ∴PP'∥QQ';
    (3)设yPP'=kx+b',
    由题意知,k=,
    ∵直线经过点(,6),
    ∴b'=3,
    ∴yPP'=x+3,
    令y=0,
    ∴x=﹣,
    ∴直线PP'与x轴的交点坐标(﹣,0).
    【点睛】
    此题是几何变换综合题,主要考查了含30度角的直角三角形的性质,旋转的性质,等边三角形的判定和性质,待定系数法,解本题的关键是理解新定义.
    23、(1), ;(2)见解析;(3).
    【解析】
    (1)连结AD、BD,利用m求出角的关系进而求出∠BCD、∠ACD的度数;
    (2)连结,由所给关系式结合直径求出AP,OP,根据弦CD最短,求出∠BCD、∠ACD的度数,即可求出m的值.
    (3)连结AD、BD,先求出AD,BD,AP,BP的长度,利用△APC∽△DPB和△CPB∽△APD得出比例关系式,得出比例关系式结合勾股定理求出CP,PD,即可求出CD.
    【详解】
    解:(1)如图1,连结、.

    是的直径

    又,

    (2)如图2,连结.

    ,,
    ,则,
    解得

    要使最短,则于





    故存在这样的值,且;
    (3)如图3,连结、.

    由(1)可得,
    ,,

    ,,



    ①,

    同理

    ③,
    由①得,由③得

    在中,,


    由②,得,

    【点睛】
    本题考查了相似三角形的判定与性质和锐角三角函数关系和圆周角定理等知识,掌握圆周角定理以及垂径定理是解题的关键.
    24、 (1) 21≤x≤62且x为整数;(2)共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.
    【解析】
    (1)根据租车总费用=A、B两种车的费用之和,列出函数关系式,再根据A
    B两种车至少要能坐1441人即可得取x的取值范围;
    (2)由总费用不超过21940元可得关于x的不等式,解不等式后再利用函数的性质即可解决问题.
    【详解】
    (1)由题意得y=380x+280(62-x)=100x+17360,
    ∵30x+20(62-x)≥1441,
    ∴x≥20.1,∴21≤x≤62且x为整数;
    (2)由题意得100x+17360≤21940,
    解得x≤45.8,∴21≤x≤45且x为整数,
    ∴共有25种租车方案,
    ∵k=100>0,∴y随x的增大而增大,
    当x=21时,y有最小值, y最小=100×21+17360=19460,
    故共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.
    【点睛】
    本题考查了一次函数的应用、一元一次不等式的应用等,解题的关键是理解题意,正确列出函数关系式,会利用函数的性质解决最值问题.
    25、(1)详见解析;(2)80°.
    【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;
    (2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.
    【解析】
    (1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;
    (2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.
    【详解】
    证明:(1)∵AC=AD,
    ∴∠ACD=∠ADC,
    又∵∠BCD=∠EDC=90°,
    ∴∠ACB=∠ADE,
    在△ABC和△AED中,

    ∴△ABC≌△AED(SAS);
    解:(2)当∠B=140°时,∠E=140°,
    又∵∠BCD=∠EDC=90°,
    ∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.
    【点睛】
    考点:全等三角形的判定与性质.
    26、(1)C(2)(3)b<﹣且b≠﹣2或b>
    【解析】
    (1)先求出B关于直线x=4的对称点B′的坐标,根据A、B′的坐标可得直线AB′的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A′,连A′B′,交直线l于点P,作BH⊥l于点H,根据对称性可知∠APG=A′PG,由∠AGP=∠BHP=90°可证明△AGP∽△BHP,根据相似三角形对应边成比例可得m=
    根据外角性质可知∠A=∠A′=,在Rt△AGP中,根据正切定义即可得结论;(3)当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方,若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q
    根据对称性质可证明△ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a≠0)与圆相切,易得P、Q重合,所以直线y=ax+b(a≠0)过定点Q,连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N,可证明△AMO∽△ONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.
    【详解】
    (1)点B关于直线x=4的对称点为B′(10,﹣),
    ∴直线AB′解析式为:y=﹣,
    当x=4时,y=,
    故答案为:C
    (2)如图,过点A作直线l的对称点A′,连A′B′,交直线l于点P
    作BH⊥l于点H
    ∵点A和A′关于直线l对称
    ∴∠APG=∠A′PG
    ∵∠BPH=∠A′PG
    ∴∠APG=∠BPH
    ∵∠AGP=∠BHP=90°
    ∴△AGP∽△BHP
    ∴,即,
    ∴mn=2,即m=,
    ∵∠APB=α,AP=AP′,
    ∴∠A=∠A′=,
    在Rt△AGP中,tan

    (3)如图,当点P位于直线AB的右下方,∠APB=60°时,
    点P在以AB为弦,所对圆周为60°,且圆心在AB下方
    若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q
    由对称性可知:∠APQ=∠A′PQ,
    又∠APB=60°
    ∴∠APQ=∠A′PQ=60°
    ∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°
    ∴∠BAQ=60°=∠AQB=∠ABQ
    ∴△ABQ是等边三角形
    ∵线段AB为定线段
    ∴点Q为定点
    若直线y=ax+b(a≠0)与圆相切,易得P、Q重合
    ∴直线y=ax+b(a≠0)过定点Q
    连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N
    ∵A(2,),B(﹣2,﹣)
    ∴OA=OB=
    ∵△ABQ是等边三角形
    ∴∠AOQ=∠BOQ=90°,OQ=,
    ∴∠AOM+∠NOD=90°
    又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO
    ∵∠AMO=∠ONQ=90°
    ∴△AMO∽△ONQ
    ∴,
    ∴,
    ∴ON=2,NQ=3,∴Q点坐标为(3,﹣2)
    设直线BQ解析式为y=kx+b
    将B、Q坐标代入得

    解得

    ∴直线BQ的解析式为:y=﹣,
    设直线AQ的解析式为:y=mx+n,
    将A、Q两点代入,
    解得 ,
    ∴直线AQ的解析式为:y=﹣3,
    若点P与B点重合,则直线PQ与直线BQ重合,此时,b=﹣,
    若点P与点A重合,则直线PQ与直线AQ重合,此时,b=,
    又∵y=ax+b(a≠0),且点P位于AB右下方,
    ∴b<﹣ 且b≠﹣2或b>.
    【点睛】
    本题考查对称性质、相似三角形的判定与性质、根据待定系数法求一次函数解析式及锐角三角函数正切的定义,熟练掌握相关知识是解题关键.
    27、解:(1) yA=27x+270,yB=30x+240;(2)当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算;(3)先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.
    【解析】
    (1)根据购买费用=单价×数量建立关系就可以表示出yA、yB的解析式;
    (2)分三种情况进行讨论,当yA=yB时,当yA>yB时,当yA<yB时,分别求出购买划算的方案;
    (3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.
    【详解】
    解:(1)由题意,得yA=(10×30+3×10x)×0.9=27x+270;
    yB=10×30+3(10x﹣20)=30x+240;
    (2)当yA=yB时,27x+270=30x+240,得x=10;
    当yA>yB时,27x+270>30x+240,得x<10;
    当yA<yB时,27x+270<30x+240,得x>10
    ∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算.
    (3)由题意知x=15,15>10,
    ∴选择A超市,yA=27×15+270=675(元),
    先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:
    (10×15﹣20)×3×0.9=351(元),
    共需要费用10×30+351=651(元).
    ∵651元<675元,
    ∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.
    【点睛】
    本题考查一次函数的应用,根据题意确列出函数关系式是本题的解题关键.

    相关试卷

    上海外国语大附属外国语校2022年初中数学毕业考试模拟冲刺卷含解析:

    这是一份上海外国语大附属外国语校2022年初中数学毕业考试模拟冲刺卷含解析,共18页。试卷主要包含了的相反数是,下列运算正确的是,下列事件中,必然事件是,某班7名女生的体重等内容,欢迎下载使用。

    江苏省南京市东山外国语校2021-2022学年中考数学考试模拟冲刺卷含解析:

    这是一份江苏省南京市东山外国语校2021-2022学年中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,定义运算“※”为,《语文课程标准》规定等内容,欢迎下载使用。

    广东省广州市广州外国语校2021-2022学年中考数学考试模拟冲刺卷含解析:

    这是一份广东省广州市广州外国语校2021-2022学年中考数学考试模拟冲刺卷含解析,共21页。试卷主要包含了答题时请按要求用笔,下列计算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map