终身会员
搜索
    上传资料 赚现金

    2021-2022学年四川省眉山市东坡区苏洵初级中学中考四模数学试题含解析

    立即下载
    加入资料篮
    2021-2022学年四川省眉山市东坡区苏洵初级中学中考四模数学试题含解析第1页
    2021-2022学年四川省眉山市东坡区苏洵初级中学中考四模数学试题含解析第2页
    2021-2022学年四川省眉山市东坡区苏洵初级中学中考四模数学试题含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年四川省眉山市东坡区苏洵初级中学中考四模数学试题含解析

    展开

    这是一份2021-2022学年四川省眉山市东坡区苏洵初级中学中考四模数学试题含解析,共18页。试卷主要包含了下列各数中负数是,已知抛物线y=等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为(  )

    A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)
    2.在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为(  )

    A.1 B.m C.m2 D.
    3.下列因式分解正确的是( )
    A. B.
    C. D.
    4.下列各数中负数是(  )
    A.﹣(﹣2) B.﹣|﹣2| C.(﹣2)2 D.﹣(﹣2)3
    5.如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是( )

    A.AC=CD B.OM=BM C.∠A=∠ACD D.∠A=∠BOD
    6.在如图所示的计算程序中,y与x之间的函数关系所对应的图象应为( )

    A. B. C. D.
    7.已知抛物线y=(x﹣)(x﹣)(a为正整数)与x轴交于Ma、Na两点,以MaNa表示这两点间的距离,则M1N1+M2N2+…+M2018N2018的值是(  )
    A. B. C. D.
    8.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为( )

    A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×104
    9.在△ABC中,∠C=90°,,那么∠B的度数为( )
    A.60° B.45° C.30° D.30°或60°
    10.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为(  )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣2),则k的值为_____.

    12.如图,在△PAB中,PA=PB,M、N、K分别是PA,PB,AB上的点,且AM=BK,BN=AK.若∠MKN=40°,则∠P的度数为___

    13.李明早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟.如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,设他推车步行的时间为x分钟,那么可列出的方程是_____________.
    14.如图,已知 OP 平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是_________.

    15.如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为_____.

    16.如图,边长为的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为
    17.在一个不透明的口袋中,有3个红球、2个黄球、一个白球,它们除颜色不同之外其它完全相同,现从口袋中随机摸出一个球记下颜色后放回,再随机摸出一个球,则两次摸到一个红球和一个黄球的概率是_____.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.

    19.(5分)如图,抛物线y=﹣x2+5x+n经过点A(1,0),与y轴交于点B.
    (1)求抛物线的解析式;
    (2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.

    20.(8分)(1)解方程:=0;
    (2)解不等式组 ,并把所得解集表示在数轴上.
    21.(10分)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=,AD=1,求DB的长.

    22.(10分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交AC于点D,动点P在抛物线对称轴上,动点Q在抛物线上.
    (1)求抛物线的解析式;
    (2)当PO+PC的值最小时,求点P的坐标;
    (3)是否存在以A,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.

    23.(12分)
    24.(14分)如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.

    (1)求证:四边形ABED是菱形;
    (2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    作AD⊥y轴于D,作CE⊥y轴于E,则∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性质得出OC=AO,∠1+∠3=90°,证出∠3=∠1,由AAS证明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出结果.
    【详解】
    解:作AD⊥y轴于D,作CE⊥y轴于E,如图所示:

    则∠ADO=∠OEC=90°,∴∠1+∠1=90°.
    ∵AO=1,AD=1,∴OD=,∴点A的坐标为(1,),∴AD=1,OD=.
    ∵四边形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.
    在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴点C的坐标为(,﹣1).
    故选A.
    【点睛】
    本题考查了正方形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等得出对应边相等是解决问题的关键.
    2、D
    【解析】
    本题主要考察二次函数与反比例函数的图像和性质.
    【详解】
    令二次函数中y=m.即x2=m,解得x=或x=令反比例函数中y=m,即=m,解得x=,将x的三个值相加得到ω=+()+=.所以本题选择D.
    【点睛】
    巧妙借助三点纵坐标相同的条件建立起两个函数之间的联系,从而解答.
    3、C
    【解析】
    依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.
    【详解】
    解:D选项中,多项式x2-x+2在实数范围内不能因式分解;
    选项B,A中的等式不成立;
    选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.
    故选C.
    【点睛】
    本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.
    4、B
    【解析】
    首先利用相反数,绝对值的意义,乘方计算方法计算化简,进一步利用负数的意义判定即可.
    【详解】
    A、-(-2)=2,是正数;
    B、-|-2|=-2,是负数;
    C、(-2)2=4,是正数;
    D、-(-2)3=8,是正数.
    故选B.
    【点睛】
    此题考查负数的意义,利用相反数,绝对值的意义,乘方计算方法计算化简是解决问题的关键.
    5、D
    【解析】
    根据垂径定理判断即可.
    【详解】
    连接DA.
    ∵直径AB⊥弦CD,垂足为M,∴CM=MD,∠CAB=∠DAB.
    ∵2∠DAB=∠BOD,∴∠CAD=∠BOD.

    故选D.
    【点睛】
    本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.
    6、D
    【解析】
    先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.
    【详解】
    由题意知,函数关系为一次函数y=-1x+4,由k=-1<0可知,y随x的增大而减小,且当x=0时,y=4,
    当y=0时,x=1.
    故选D.
    【点睛】
    本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解.
    7、C
    【解析】
    代入y=0求出x的值,进而可得出MaNa=-,将其代入M1N1+M2N2+…+M2018N2018中即可求出结论.
    【详解】
    解:当y=0时,有(x-)(x-)=0,
    解得:x1=,x2=,
    ∴MaNa=-,
    ∴M1N1+M2N2+…+M2018N2018=1-+-+…+-=1-=.
    故选C.
    【点睛】
    本题考查了抛物线与x轴的交点坐标、二次函数图象上点的坐标特征以及规律型中数字的变化类,利用二次函数图象上点的坐标特征求出MaNa的值是解题的关键.
    8、D
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:10700=1.07×104,
    故选:D.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    9、C
    【解析】
    根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B的值即可.
    【详解】
    解:∵,
    ∴∠A=60°.
    ∵∠C=90°,
    ∴∠B=90°-60°=30°.
    点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.
    10、C
    【解析】
    连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.
    【详解】
    解:连接OD,
    在Rt△OCD中,OC=OD=2,
    ∴∠ODC=30°,CD=
    ∴∠COD=60°,
    ∴阴影部分的面积= ,
    故选:C.

    【点睛】
    本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    试题分析:设点C的坐标为(x,y),则B(-2,y)D(x,-2),设BD的函数解析式为y=mx,则y=-2m,x=-,∴k=xy=(-2m)·(-)=1.
    考点:求反比例函数解析式.
    12、100°
    【解析】
    由条件可证明△AMK≌△BKN,再结合外角的性质可求得∠A=∠MKN,再利用三角形内角和可求得∠P.
    【详解】
    解:∵PA=PB,
    ∴∠A=∠B,
    在△AMK和△BKN中,

    ∴△AMK≌△BKN(SAS),
    ∴∠AMK=∠BKN,
    ∵∠A+∠AMK=∠MKN+∠BKN,
    ∴∠A=∠MKN=40°,
    ∴∠P=180°﹣∠A﹣∠B=180°﹣40°﹣40°=100°,
    故答案为100°
    【点睛】
    本题主要考查全等三角形的判定和性质及三角形内角和定理,利用条件证得△AMK≌△BKN是解题的关键.
    13、
    【解析】
    分析:
    根据题意把李明步行和骑车各自所走路程表达出来,再结合步行和骑车所走总里程为2900米,列出方程即可.
    详解:
    设他推车步行的时间为x分钟,根据题意可得:
    80x+250(15-x)=2900.
    故答案为80x+250(15-x)=2900.
    点睛:弄清本题中的等量关系:李明推车步行的路程+李明骑车行驶的路程=2900是解题的关键.
    14、
    【解析】
    由 OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半, 即可求得DM的长.
    【详解】
    ∵OP 平分∠AOB,∠AOB=60°,
    ∴∠AOP=∠COP=30°,
    ∵CP∥OA,
    ∴∠AOP=∠CPO,
    ∴∠COP=∠CPO,
    ∴OC=CP=2,
    ∵∠PCE=∠AOB=60°,PE⊥OB,
    ∴∠CPE=30°,



    ∵PD⊥OA,点M是OP的中点,

    故答案为:
    【点睛】
    此题考查了等腰三角形的性质与判定、含 30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,属于中考常见题型,求出 OP 的长是解题关键.
    15、72°
    【解析】
    首先根据正五边形的性质得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.
    【详解】
    ∵五边形ABCDE为正五边形,
    ∴AB=BC=AE,∠ABC=∠BAE=108°,
    ∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,
    ∴∠AFE=∠BAC+∠ABE=72°,
    故答案为72°.
    【点睛】
    本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键
    16、
    【解析】
    因为大正方形边长为,小正方形边长为m,所以剩余的两个直角梯形的上底为m,下底为,所以矩形的另一边为梯形上、下底的和:+m=.
    17、
    【解析】
    先画树状图展示所有36种等可能的结果数,再找出两次摸到一个红球和一个黄球的结果数,然后根据概率公式求解.
    【详解】
    画树状图如下:

    由树状图可知,共有36种等可能结果,其中两次摸到一个红球和一个黄球的结果数为12,
    所以两次摸到一个红球和一个黄球的概率为,
    故答案为.
    【点睛】
    本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.

    三、解答题(共7小题,满分69分)
    18、△A′DE是等腰三角形;证明过程见解析.
    【解析】
    试题分析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.
    试题解析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.
    理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,
    ∴CD=DA=DB,
    ∴∠DAC=∠DCA,
    ∵A′C∥AC,
    ∴∠DA′E=∠A,∠DEA′=∠DCA,
    ∴∠DA′E=∠DEA′,
    ∴DA′=DE,
    ∴△A′DE是等腰三角形.
    ∵四边形DEFD′是菱形,
    ∴EF=DE=DA′,EF∥DD′,
    ∴∠CEF=∠DA′E,∠EFC=∠CD′A′,
    ∵CD∥C′D′,
    ∴∠A′DE=∠A′D′C=∠EFC,
    在△A′DE和△EFC′中,

    ∴△A′DE≌△EFC′.

    考点:1.菱形的性质;2.全等三角形的判定;3.平移的性质.
    19、(1);(2)(0,)或(0,4).
    【解析】
    试题分析:(1)将A点的坐标代入抛物线中,即可得出二次函数的解析式;
    (2)本题要分两种情况进行讨论:①PB=AB,先根据抛物线的解析式求出B点的坐标,即可得出OB的长,进而可求出AB的长,也就知道了PB的长,由此可求出P点的坐标;
    ②PA=AB,此时P与B关于x轴对称,由此可求出P点的坐标.
    试题解析:(1)∵抛物线经过点A(1,0),∴,∴;
    (2)∵抛物线的解析式为,∴令,则,∴B点坐标(0,﹣4),AB=,
    ①当PB=AB时,PB=AB=,∴OP=PB﹣OB=.∴P(0,),
    ②当PA=AB时,P、B关于x轴对称,∴P(0,4),因此P点的坐标为(0,)或(0,4).
    考点:二次函数综合题.
    20、(1)x=;(2)x>3;数轴见解析;
    【解析】
    (1)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;
    (2)先求出每个不等式的解集,再求出不等式组的解集即可.
    【详解】
    解:(1)方程两边都乘以(1﹣2x)(x+2)得:x+2﹣(1﹣2x)=0,
    解得:
    检验:当时,(1﹣2x)(x+2)≠0,所以是原方程的解,
    所以原方程的解是;
    (2) ,
    ∵解不等式①得:x>1,
    解不等式②得:x>3,
    ∴不等式组的解集为x>3,
    在数轴上表示为:.
    【点睛】
    本题考查了解分式方程和解一元一次不等式组、在数轴上表示不等式组的解集等知识点,能把分式方程转化成整式方程是解(1)的关键,能根据不等式的解集得出不等式组的解集是解(2)的关键.
    21、BD= 2.
    【解析】
    试题分析:根据∠ACD=∠ABC,∠A是公共角,得出△ACD∽△ABC,再利用相似三角形的性质得出AB的长,从而求出DB的长.
    试题解析:
    ∵∠ACD=∠ABC,
    又∵∠A=∠A,
    ∴△ABC∽△ACD ,
    ∴,
    ∵AC=,AD=1,
    ∴,
    ∴AB=3,
    ∴BD= AB﹣AD=3﹣1=2 .
    点睛:本题主要考查了相似三角形的判定以及相似三角形的性质,利用相似三角形的性质求出AB的长是解题关键.
    22、(1)y=x2+3x;(2)当PO+PC的值最小时,点P的坐标为(2,);(3)存在,具体见解析.
    【解析】
    (1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;
    (2)D与P重合时有最小值,求出点D的坐标即可;
    (3)存在,分别根据①AC为对角线,②AC为边,两种情况,分别求解即可.
    【详解】
    (1)在矩形OABC中,OA=4,OC=3,
    ∴A(4,0),C(0,3),
    ∵抛物线经过O、A两点,且顶点在BC边上,
    ∴抛物线顶点坐标为(2,3),
    ∴可设抛物线解析式为y=a(x﹣2)2+3,
    把A点坐标代入可得0=a(4﹣2)2+3,解得a=,
    ∴抛物线解析式为y=(x﹣2)2+3,即y=x2+3x;
    (2)∵点P在抛物线对称轴上,∴PA=PO,∴PO+PC= PA+PC.
    ∴当点P与点D重合时,PA+PC= AC;当点P不与点D重合时,PA+PC> AC;
    ∴当点P与点D重合时,PO+PC的值最小,
    设直线AC的解析式为y=kx+b,
    根据题意,得解得
    ∴直线AC的解析式为,
    当x=2时,,
    ∴当PO+PC的值最小时,点P的坐标为(2,);
    (3)存在.

    ①AC为对角线,当四边形AQCP为平行四边形,点Q为抛物线的顶点,即Q(2,3),则P(2,0);
    ②AC为边,当四边形AQPC为平行四边形,点C向右平移2个单位得到P,则点A向右平移2个单位得到点Q,则Q点的横坐标为6,当x=6时,,此时Q(6,−9),则点A(4,0)向右平移2个单位,向下平移9个单位得到点Q,所以点C(0,3)向右平移2个单位,向下平移9个单位得到点P,则P(2,−6);
    当四边形APQC为平行四边形,点A向左平移2个单位得到P,则点C向左平移2个单位得到点Q,则Q点的横坐标为−2,当x=−2时,,此时Q(−2,−9),则点C(0,3)向左平移2个单位,向下平移12个单位得到点Q,所以点A(4,0)向左平移2个单位,向下平移12个单位得到点P,则P(2,−12);
    综上所述,P(2,0),Q(2,3)或P(2,−6),Q(6,−9)或P(2,−12),Q(−2,−9).
    【点睛】
    二次函数的综合应用,涉及矩形的性质、待定系数法、平行四边形的性质、方程思想及分类讨论思想等知识.
    23、﹣2<x<2.
    【解析】
    分别解不等式,进而得出不等式组的解集.
    【详解】

    解①得:x<2
    解②得:x>﹣2.
    故不等式组的解集为:﹣2<x<2.
    【点睛】
    本题主要考查了解一元一次不等式组,正确掌握不等式组的解法是解题的关键.
    24、见解析
    【解析】
    试题分析:(1)先证得四边形ABED是平行四边形,又AB=AD, 邻边相等的平行四边形是菱形;
    (2)四边形ABED是菱形,∠ABC=60°,所以∠DEC=60°,AB=ED,又EC=2BE,EC=2DE,可得△DEC是直角三角形.
    试题解析:梯形ABCD中,AD∥BC,
    ∴四边形ABED是平行四边形,
    又AB=AD,
    ∴四边形ABED是菱形;
    (2)∵四边形ABED是菱形,∠ABC=60°,
    ∴∠DEC=60°,AB=ED,
    又EC=2BE,
    ∴EC=2DE,
    ∴△DEC是直角三角形,
    考点:1.菱形的判定;2.直角三角形的性质;3.平行四边形的判定

    相关试卷

    四川省眉山市东坡区苏洵初级中学2023-2024学年数学九上期末联考模拟试题含答案:

    这是一份四川省眉山市东坡区苏洵初级中学2023-2024学年数学九上期末联考模拟试题含答案,共9页。试卷主要包含了下列方程是一元二次方程的是,如图,△OAB∽△OCD,OA等内容,欢迎下载使用。

    四川省 眉山市东坡区苏洵初级中学2023—2024学年上学期九年级数学期中质量监测:

    这是一份四川省 眉山市东坡区苏洵初级中学2023—2024学年上学期九年级数学期中质量监测,共3页。试卷主要包含了单选题等内容,欢迎下载使用。

    四川省眉山市东坡区苏洵初级中学2023-2024学年八年级上期期中数学质量监测试题:

    这是一份四川省眉山市东坡区苏洵初级中学2023-2024学年八年级上期期中数学质量监测试题,共4页。试卷主要包含了下列计算正确的是 A,下列运算结果正确的是 A,如果≈2.872,那么约等于等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map