终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年四川省成都市青白江区中考数学押题试卷含解析

    立即下载
    加入资料篮
    2021-2022学年四川省成都市青白江区中考数学押题试卷含解析第1页
    2021-2022学年四川省成都市青白江区中考数学押题试卷含解析第2页
    2021-2022学年四川省成都市青白江区中考数学押题试卷含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年四川省成都市青白江区中考数学押题试卷含解析

    展开

    这是一份2021-2022学年四川省成都市青白江区中考数学押题试卷含解析,共18页。试卷主要包含了图为小明和小红两人的解题过程等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )

    A.M B.N C.P D.Q
    2.如图,若a∥b,∠1=60°,则∠2的度数为(  )

    A.40° B.60° C.120° D.150°
    3.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.

    下面有三个推断:
    ①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;
    ②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;
    ③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.1.
    其中合理的是(  )
    A.① B.② C.①② D.①③
    4.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是(   )
    A.22x=16(27﹣x) B.16x=22(27﹣x) C.2×16x=22(27﹣x) D.2×22x=16(27﹣x)
    5.如图,3个形状大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角为60°,A、B、C都在格点上,点D在过A、B、C三点的圆弧上,若也在格点上,且∠AED=∠ACD,则∠AEC 度数为 ( )

    A.75° B.60° C.45° D.30°
    6.如图,是的直径,是的弦,连接,,,则与的数量关系为( )

    A. B.
    C. D.
    7.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为( )

    A.2 B.2 C. D.2
    8.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中,,,,则等于  

    A. B. C. D.
    9.在下列函数中,其图象与x轴没有交点的是(  )
    A.y=2x B.y=﹣3x+1 C.y=x2 D.y=
    10.图为小明和小红两人的解题过程.下列叙述正确的是( )
    计算:+

    A.只有小明的正确 B.只有小红的正确
    C.小明、小红都正确 D.小明、小红都不正确
    二、填空题(共7小题,每小题3分,满分21分)
    11.若不等式组的解集为,则________.
    12.方程的解是__________.
    13.如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm.

    14.如图,⊙O的直径AB=8,C为的中点,P为⊙O上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,点P从B运动到C时,则点D运动的路径长为_____.

    15.某校“百变魔方”社团为组织同学们参加学校科技节的“最强大脑”大赛,准备购买A,B两款魔方.社长发现若购买2个A款魔方和6个B款魔方共需170元,购买3个A款魔方和购买8个B款魔方所需费用相同. 求每款魔方的单价.设A款魔方的单价为x元,B款魔方的单价为y元,依题意可列方程组为_______.
    16.不等式组的解集为_____.
    17.如图,四边形ABCD为矩形,H、F分别为AD、BC边的中点,四边形EFGH为矩形,E、G分别在AB、CD边上,则图中四个直角三角形面积之和与矩形EFGH的面积之比为_____.

    三、解答题(共7小题,满分69分)
    18.(10分)已知:如图,平行四边形ABCD中,E、F分别是边BC和AD上的点,且BE=DF,求证:AE=CF
    19.(5分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).
    (1)求m的值和一次函数的解析式;
    (2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;
    (3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.

    20.(8分) “铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.
    (1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?
    (2)专家建议:从安全的角度考虑,实际运行时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m%小时,求m的值.
    21.(10分)如图,在▱ABCD中,AE⊥BC交边BC于点E,点F为边CD上一点,且DF=BE.过点F作FG⊥CD,交边AD于点G.求证:DG=DC.

    22.(10分)如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0).

    (1)求点B的坐标;
    (2)已知,C为抛物线与y轴的交点.
    ①若点P在抛物线上,且,求点P的坐标;
    ②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
    23.(12分)小明遇到这样一个问题:已知:. 求证:.
    经过思考,小明的证明过程如下:
    ∵,∴.∴.接下来,小明想:若把带入一元二次方程(a0),恰好得到.这说明一元二次方程有根,且一个根是.所以,根据一元二次方程根的判别式的知识易证:.
    根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目:
    已知:. 求证:.请你参考上面的方法,写出小明所编题目的证明过程.
    24.(14分)在平面直角坐标系xOy中,点M的坐标为,点N的坐标为,且,,我们规定:如果存在点P,使是以线段MN为直角边的等腰直角三角形,那么称点P为点M、N的“和谐点”.

    (1)已知点A的坐标为,
    ①若点B的坐标为,在直线AB的上方,存在点A,B的“和谐点”C,直接写出点C的坐标;
    ②点C在直线x=5上,且点C为点A,B的“和谐点”,求直线AC的表达式.
    (2)⊙O的半径为r,点为点、的“和谐点”,且DE=2,若使得与⊙O有交点,画出示意图直接写出半径r的取值范围.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    解:∵点P所表示的数为a,点P在数轴的右边,∴-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,∴数-3a所对应的点可能是M,故选A.
    点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍.
    2、C
    【解析】
    如图:

    ∵∠1=60°,
    ∴∠3=∠1=60°,
    又∵a∥b,
    ∴∠2+∠3=180°,
    ∴∠2=120°,
    故选C.
    点睛:本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.平行线的性质定理:两直线平行,同位角相等,内错角相等,同旁内角互补,两条平行线之间的距离处处相等.
    3、B
    【解析】
    ①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.1.错误,
    故选B.
    【点睛】本题考查了利用频率估计概率,能正确理解相关概念是解题的关键.
    4、D
    【解析】
    设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x),故选D.
    5、B
    【解析】
    将圆补充完整,利用圆周角定理找出点E的位置,再根据菱形的性质即可得出△CME为等边三角形,进而即可得出∠AEC的值.
    【详解】
    将圆补充完整,找出点E的位置,如图所示.

    ∵弧AD所对的圆周角为∠ACD、∠AEC,
    ∴图中所标点E符合题意.
    ∵四边形∠CMEN为菱形,且∠CME=60°,
    ∴△CME为等边三角形,
    ∴∠AEC=60°.
    故选B.
    【点睛】
    本题考查了菱形的性质、等边三角形的判定依据圆周角定理,根据圆周角定理结合图形找出点E的位置是解题的关键.
    6、C
    【解析】
    首先根据圆周角定理可知∠B=∠C,再根据直径所得的圆周角是直角可得∠ADB=90°,然后根据三角形的内角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,从而得到结果.
    【详解】
    解:∵是的直径,
    ∴∠ADB=90°.
    ∴∠DAB+∠B=90°.
    ∵∠B=∠C,
    ∴∠DAB+∠C=90°.
    故选C.
    【点睛】
    本题考查了圆周角定理及其逆定理和三角形的内角和定理,掌握相关知识进行转化是解题的关键.
    7、B
    【解析】
    本题考查的圆与直线的位置关系中的相切.连接OC,EC所以∠EOC=2∠D=60°,所以△ECO为等边三角形.又因为弦EF∥AB所以OC垂直EF故∠OEF=30°所以EF=OE=2.
    8、C
    【解析】
    根据三角形的内角和定理和三角形外角性质进行解答即可.
    【详解】
    如图:

    ,,
    ,,

    =
    =,
    故选C.
    【点睛】
    本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键.
    9、D
    【解析】
    依据一次函数的图象,二次函数的图象以及反比例函数的图象进行判断即可.
    【详解】
    A.正比例函数y=2x与x轴交于(0,0),不合题意;
    B.一次函数y=-3x+1与x轴交于(,0),不合题意;
    C.二次函数y=x2与x轴交于(0,0),不合题意;
    D.反比例函数y=与x轴没有交点,符合题意;
    故选D.
    10、D
    【解析】
    直接利用分式的加减运算法则计算得出答案.
    【详解】
    解:
    =﹣+
    =﹣+

    =,
    故小明、小红都不正确.
    故选:D.
    【点睛】
    此题主要考查了分式的加减运算,正确进行通分运算是解题关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、-1
    【解析】
    分析:解出不等式组的解集,与已知解集-1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.
    详解:由不等式得x>a+2,x<b,
    ∵-1<x<1,
    ∴a+2=-1,b=1
    ∴a=-3,b=2,
    ∴(a+b)2009=(-1)2009=-1.
    故答案为-1.
    点睛:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.
    12、.
    【解析】
    根据解分式方程的步骤依次计算可得.
    【详解】
    解:去分母,得:,
    解得:,
    当时,,
    所以是原分式方程的解,
    故答案为:.
    【点睛】
    本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.
    13、1
    【解析】
    要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.
    【详解】
    解:将长方体展开,连接A、B′,
    ∵AA′=1+3+1+3=8(cm),A′B′=6cm,
    根据两点之间线段最短,AB′==1cm.
    故答案为1.

    考点:平面展开-最短路径问题.
    14、
    【解析】
    分析:以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,即可得到点D运动的路径长为=2π.
    详解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°.∵⊙O的直径为AB,C为的中点,∴∠APC=45°.又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的.又∵AB=8,C为的中点,∴AC=4,∴△ACQ中,AQ=4,∴点D运动的路径长为=2π.
    故答案为2π.

    点睛:本题考查了轨迹,等腰直角三角形的性质,圆周角定理以及弧长的计算,正确作出辅助线是解题的关键.
    15、
    【解析】
    分析:设A款魔方的单价为x元,B魔方单价为y元,根据“购买两个A款魔方和6个B款魔方共需170元,购买3个A款魔方和购买8个B款魔方所需费用相同”,即可得出关于x,y的二元一次方程组,此题得解.
    解:设A魔方的单价为x元,B款魔方的单价为y元,根据题意得:
    故答案为
    点睛:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
    16、﹣2≤x<
    【解析】
    根据解不等式的步骤从而得到答案.
    【详解】

    解不等式①可得:x≥-2,
    解不等式②可得:x<,
    故答案为-2≤x<.
    【点睛】
    本题主要考查了解不等式,解本题的要点在于分别求解①,②不等式,从而得到答案.
    17、1:1
    【解析】
    根据矩形性质得出AD=BC,AD∥BC,∠D=90°,求出四边形HFCD是矩形,得出△HFG的面积是CD×DH=S矩形HFCD,推出S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,即可得出答案.
    【详解】
    连接HF,

    ∵四边形ABCD为矩形,
    ∴AD=BC,AD∥BC,∠D=90°
    ∵H、F分别为AD、BC边的中点,
    ∴DH=CF,DH∥CF,
    ∵∠D=90°,
    ∴四边形HFCD是矩形,
    ∴△HFG的面积是CD×DH=S矩形HFCD,
    即S△HFG=S△DHG+S△CFG,
    同理S△HEF=S△BEF+S△AEH,
    ∴图中四个直角三角形面积之和与矩形EFGH的面积之比是1:1,
    故答案为1:1.
    【点睛】
    本题考查了矩形的性质和判定,三角形的面积,主要考查学生的推理能力.

    三、解答题(共7小题,满分69分)
    18、详见解析
    【解析】
    根据平行四边形的性质和已知条件证明△ABE≌△CDF,再利用全等三角形的性质:即可得到AE=CF.
    【详解】
    证:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,又∵BE=DF,∴△ABE≌△CDF,∴AE=CF. (其他证法也可)
    19、(1)y=1x﹣1(1)1(3)x>1
    【解析】
    试题分析:(1)先把A(m,1)代入正比例函数解析式可计算出m=1,然后把A(1,1)代入y=kx﹣k计算出k的值,从而得到一次函数解析式为y=1x﹣1;
    (1)先确定B点坐标,然后根据三角形面积公式计算;
    (3)观察函数图象得到当x>1时,直线y=kx﹣k都在y=x的上方,即函数y=kx﹣k的值大于函数y=x的值.
    试题解析:(1)把A(m,1)代入y=x得m=1,则点A的坐标为(1,1),
    把A(1,1)代入y=kx﹣k得1k﹣k=1,解得k=1,
    所以一次函数解析式为y=1x﹣1;
    (1)把x=0代入y=1x﹣1得y=﹣1,则B点坐标为(0,﹣1),
    所以S△AOB=×1×1=1;
    (3)自变量x的取值范围是x>1.
    考点:两条直线相交或平行问题
    20、(1)1600千米;(2)1
    【解析】
    试题分析:(1)利用“从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时”,分别得出等式组成方程组求出即可;
    (2)根据题意得出方程(80+120)(1-m%)(8+m%)=1600,进而解方程求出即可.
    试题解析:
    (1)设原时速为xkm/h,通车后里程为ykm,则有:

    解得: .
    答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;
    (2)由题意可得出:(80+120)(1﹣m%)(8+m%)=1600,
    解得:m1=1,m2=0(不合题意舍去),
    答:m的值为1.
    21、证明见解析.
    【解析】
    试题分析:先由平行四边形的性质得到∠B=∠D,AB=CD,再利用垂直的定义得到∠AEB=∠GFD=90°,根据“ASA”判定△AEB≌△GFD,从而得到AB=DC,所以有DG=DC.
    试题解析:∵四边形ABCD为平行四边形,∴∠B=∠D,AB=CD,∵AE⊥BC,FG⊥CD,∴∠AEB=∠GFD=90°,在△AEB和△GFD中,∵∠B=∠D,BE=DF,∠AEB=∠GFD,∴△AEB≌△GFD,∴AB=DC,∴DG=DC.
    考点:1.全等三角形的判定与性质;2.平行四边形的性质.
    22、(1)点B的坐标为(1,0).
    (2)①点P的坐标为(4,21)或(-4,5).
    ②线段QD长度的最大值为.
    【解析】
    (1)由抛物线的对称性直接得点B的坐标.
    (2)①用待定系数法求出抛物线的解析式,从而可得点C的坐标,得到,设出点P 的坐标,根据列式求解即可求得点P的坐标.
    ②用待定系数法求出直线AC的解析式,由点Q在线段AC上,可设点Q的坐标为(q,-q-3),从而由QD⊥x轴交抛物线于点D,得点D的坐标为(q,q2+2q-3),从而线段QD等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.
    【详解】
    解:(1)∵A、B两点关于对称轴对称 ,且A点的坐标为(-3,0),
    ∴点B的坐标为(1,0).
    (2)①∵抛物线,对称轴为,经过点A(-3,0),
    ∴,解得.
    ∴抛物线的解析式为.
    ∴B点的坐标为(0,-3).∴OB=1,OC=3.∴.
    设点P的坐标为(p,p2+2p-3),则.
    ∵,∴,解得.
    当时;当时,,
    ∴点P的坐标为(4,21)或(-4,5).
    ②设直线AC的解析式为,将点A,C的坐标代入,得:
    ,解得:.
    ∴直线AC的解析式为.
    ∵点Q在线段AC上,∴设点Q的坐标为(q,-q-3).
    又∵QD⊥x轴交抛物线于点D,∴点D的坐标为(q,q2+2q-3).
    ∴.
    ∵,
    ∴线段QD长度的最大值为.
    23、证明见解析
    【解析】
    解:∵,∴.∴.
    ∴是一元二次方程的根.
    ∴,∴.
    24、(1)①点C坐标为或;②y=x+2或y=-x+3;(2)或
    【解析】
    (1)①根据“和谐点”的定义即可解决问题;
    ②首先求出点C坐标,再利用待定系数法即可解决问题;
    (2)分两种情形画出图形即可解决问题.
    【详解】
    (1)①如图1.

    观察图象可知满足条件的点C坐标为C(1,5)或C'(3,5);
    ②如图2.

    由图可知,B(5,3).
    ∵A(1,3),∴AB=3.
    ∵△ABC为等腰直角三角形,∴BC=3,∴C1(5,7)或C2(5,﹣1).
    设直线AC的表达式为y=kx+b(k≠0),当C1(5,7)时,,∴,∴y=x+2,当C2(5,﹣1)时,,∴,∴y=﹣x+3.
    综上所述:直线AC的表达式是y=x+2或y=﹣x+3.
    (2)分两种情况讨论:
    ①当点F在点E左侧时:

    连接OD.则OD=,∴.
    ②当点F在点E右侧时:

    连接OE,OD.
    ∵E(1,2),D(1,3),∴OE=,OD=,∴.
    综上所述:或.
    【点睛】
    本题考查了一次函数综合题、圆的有关知识、等腰直角三角形的判定和性质、“和谐点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的首先思考问题,属于中考压轴题.

    相关试卷

    2023年四川省成都市青白江区中考数学二诊试卷(含解析):

    这是一份2023年四川省成都市青白江区中考数学二诊试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省成都市青羊区2021-2022学年中考数学押题试卷含解析:

    这是一份四川省成都市青羊区2021-2022学年中考数学押题试卷含解析,共23页。试卷主要包含了下列事件中,属于必然事件的是等内容,欢迎下载使用。

    四川省成都市成华区重点中学2021-2022学年中考数学押题试卷含解析:

    这是一份四川省成都市成华区重点中学2021-2022学年中考数学押题试卷含解析,共19页。试卷主要包含了计算,下列说法,3的倒数是,下列计算结果正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map