


2021-2022学年四川省巴中市达标名校中考数学最后冲刺模拟试卷含解析
展开
这是一份2021-2022学年四川省巴中市达标名校中考数学最后冲刺模拟试卷含解析,共20页。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.下列生态环保标志中,是中心对称图形的是( )
A. B. C. D.
2.如果,那么的值为( )
A.1 B.2 C. D.
3.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为( )
A.125° B.75° C.65° D.55°
4.2022年冬奥会,北京、延庆、张家口三个赛区共25个场馆,北京共12个,其中11个为2008年奥运会遗留场馆,唯一一个新建的场馆是国家速滑馆,可容纳12000人观赛,将12000用科学记数法表示应为( )
A.12×10 B.1.2×10 C.1.2×10 D.0.12×10
5.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是( )
A.30和 20 B.30和25 C.30和22.5 D.30和17.5
6.如图,⊙O与直线l1相离,圆心O到直线l1的距离OB=2,OA=4,将直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,则OC=( )
A.1 B.2 C.3 D.4
7.在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是( )
A.千里江山图
B.京津冀协同发展
C.内蒙古自治区成立七十周年
D.河北雄安新区建立纪念
8.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为( )
A. B. C. D.1
9.小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数.小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加1.若小昱在某页写的数为101,则阿帆在该页写的数为何?( )
A.350 B.351 C.356 D.358
10.若关于 x 的一元一次不等式组 无解,则 a 的取值范围是( )
A.a≥3 B.a>3 C.a≤3 D.a<3
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知圆锥的高为3,底面圆的直径为8,则圆锥的侧面积为_____.
12.计算(-2)×3+(-3)=_______________.
13.两地相距的路程为240千米,甲、乙两车沿同一线路从地出发到地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达地.甲、乙两车相距的路程(千米)与甲车行驶时间(小时)之间的关系如图所示,求乙车修好时,甲车距地还有____________千米.
14.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.
15.如图,正方形内的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为 .
16.如图,已知AB∥CD,若,则=_____.
三、解答题(共8题,共72分)
17.(8分)今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(图11-1)和扇形统计图(图11-2),根据图表中的信息解答下列问题:
分组
分数段(分)
频数
A
36≤x<41
22
B
41≤x<46
5
C
46≤x<51
15
D
51≤x<56
m
E
56≤x<61
10
(1)求全班学生人数和m的值;
(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段;
(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.
18.(8分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:
(1)A、B两点之间的距离是 米,甲机器人前2分钟的速度为 米/分;
(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;
(3)若线段FG∥x轴,则此段时间,甲机器人的速度为 米/分;
(4)求A、C两点之间的距离;
(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.
19.(8分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间用t表示,单位:小时,采用随机抽样的方法进行问卷调查,调查结果按,,,分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:
求本次调查的学生人数;
求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;
若该校共有学生1200人,试估计每周课外阅读时间满足的人数.
20.(8分)如图1,在矩形ABCD中,AD=4,AB=2,将矩形ABCD绕点A逆时针旋转α(0<α<90°)得到矩形AEFG.延长CB与EF交于点H.
(1)求证:BH=EH;
(2)如图2,当点G落在线段BC上时,求点B经过的路径长.
21.(8分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.
(1)请画出树状图并写出所有可能得到的三位数;
(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.
22.(10分)某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下:
收集数据
从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下:
八年级
78
86
74
81
75
76
87
70
75
90
75
79
81
70
74
80
86
69
83
77
九年级
93
73
88
81
72
81
94
83
77
83
80
81
70
81
73
78
82
80
70
40
整理、描述数据
将成绩按如下分段整理、描述这两组样本数据:
成绩(x)
40≤x≤49
50≤x≤59
60≤x≤69
70≤x≤79
80≤x≤89
90≤x≤100
八年级人数
0
0
1
11
7
1
九年级人数
1
0
0
7
10
2
(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)
分析数据
两组样本数据的平均数、中位数、众数、方差如表所示:
年级
平均数
中位数
众数
方差
八年级
78.3
77.5
75
33.6
九年级
78
80.5
a
52.1
(1)表格中a的值为______;请你估计该校九年级体质健康优秀的学生人数为多少?根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由.(请从两个不同的角度说明推断的合理性)
23.(12分)已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:△ACE∽△BDE;BE•DC=AB•DE.
24.如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB.求证:AB是⊙O的切线;若∠ACD=45°,OC=2,求弦CD的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.
故选B.
【考点】中心对称图形.
2、D
【解析】
先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案.
【详解】
故选:D.
【点睛】
本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.
3、D
【解析】
延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.
【详解】
延长CB,延长CB,
∵AD∥CB,
∴∠1=∠ADE=145,
∴∠DBC=180−∠1=180−125=55.
故答案选:D.
【点睛】
本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.
4、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
数据12000用科学记数法表示为1.2×104,故选:B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5、C
【解析】
将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得.
【详解】
将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,
所以该组数据的众数为30、中位数为=22.5,
故选:C.
【点睛】
此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
6、B
【解析】
先利用三角函数计算出∠OAB=60°,再根据旋转的性质得∠CAB=30°,根据切线的性质得OC⊥AC,从而得到∠OAC=30°,然后根据含30度的直角三角形三边的关系可得到OC的长.
【详解】
解:在Rt△ABO中,sin∠OAB===,
∴∠OAB=60°,
∵直线l1绕点A逆时针旋转30°后得到的直线l1刚好与⊙O相切于点C,
∴∠CAB=30°,OC⊥AC,
∴∠OAC=60°﹣30°=30°,
在Rt△OAC中,OC=OA=1.
故选B.
【点睛】
本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了旋转的性质.
7、C
【解析】
根据中心对称图形的概念求解.
【详解】
解:A选项是轴对称图形,不是中心对称图形,故本选项错误;
B选项不是中心对称图形,故本选项错误;
C选项为中心对称图形,故本选项正确;
D选项不是中心对称图形,故本选项错误.
故选C.
【点睛】
本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.
8、B
【解析】
分析:由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.
详解: 由于点P在运动中保持∠APD=90°, ∴点P的路径是一段以AD为直径的弧,
设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,
在Rt△QDC中,QC=, ∴CP=QC-QP=,故选B.
点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P的运动轨迹.
9、B
【解析】
根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.
【详解】
解:小昱所写的数为 1,3,5,1,…,101,…;阿帆所写的数为 1,8,15,22,…,
设小昱所写的第n个数为101,
根据题意得:101=1+(n-1)×2,
整理得:2(n-1)=100,即n-1=50,
解得:n=51,
则阿帆所写的第51个数为1+(51-1)×1=1+50×1=1+350=2.
故选B.
【点睛】
此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.
10、A
【解析】
先求出各不等式的解集,再与已知解集相比较求出 a 的取值范围.
【详解】
由 x﹣a>0 得,x>a;由 1x﹣1<2(x+1)得,x<1,
∵此不等式组的解集是空集,
∴a≥1.
故选:A.
【点睛】
考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、20π
【解析】
利用勾股定理可求得圆锥的母线长,然后根据圆锥的侧面积公式进行计算即可.
【详解】
底面直径为8,底面半径=4,底面周长=8π,
由勾股定理得,母线长==5,
故圆锥的侧面积=×8π×5=20π,
故答案为:20π.
【点睛】
本题主要考查了圆锥的侧面积的计算方法.解题的关键是熟记圆锥的侧面展开扇形的面积计算方法.
12、-9
【解析】
根据有理数的计算即可求解.
【详解】
(-2)×3+(-3)=-6-3=-9
【点睛】
此题主要考查有理数的混合运算,解题的关键是熟知有理数的运算法则.
13、90
【解析】
【分析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B地,设乙车出故障前走了t1小时,修好后走了t2小时,根据等量关系甲车用了小时行驶了全程,乙车行驶的路程为60t1+50t2=240,列方程组求出t2,再根据甲车的速度即可知乙车修好时甲车距B地的路程.
【详解】甲车先行40分钟(),所行路程为30千米,
因此甲车的速度为(千米/时),
设乙车的初始速度为V乙,则有
,
解得:(千米/时),
因此乙车故障后速度为:60-10=50(千米/时),
设乙车出故障前走了t1小时,修好后走了t2小时,则有
,解得:,
45×2=90(千米),
故答案为90.
【点评】 本题考查了一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.
14、36°
【解析】
由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.
【详解】
∵五边形ABCDE是正五边形,
∴∠B=108°,AB=CB,
∴∠ACB=(180°﹣108°)÷2=36°;
故答案为36°.
15、.
【解析】
试题分析:此题是求阴影部分的面积占正方形面积的几分之几,即为所求概率.阴影部分的面积为:3×1÷2×4=6,因为正方形对角线形成4个等腰直角三角形,所以边长是=,∴这个点取在阴影部分的概率为:6÷=6÷18=.
考点:求随机事件的概率.
16、
【解析】
【分析】利用相似三角形的性质即可解决问题;
【详解】∵AB∥CD,
∴△AOB∽△COD,
∴,
故答案为.
【点睛】本题考查平行线的性质,相似三角形的判定和性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.
三、解答题(共8题,共72分)
17、(1)50,18;(2)中位数落在51﹣56分数段;(3).
【解析】
(1)利用C分数段所占比例以及其频数求出总数即可,进而得出m的值;
(2)利用中位数的定义得出中位数的位置;
(3)利用列表或画树状图列举出所有的可能,再根据概率公式计算即可得解.
【详解】
解:(1)由题意可得:全班学生人数:15÷30%=50(人);
m=50﹣2﹣5﹣15﹣10=18(人);
(2)∵全班学生人数:50人,
∴第25和第26个数据的平均数是中位数,
∴中位数落在51﹣56分数段;
(3)如图所示:
将男生分别标记为A1,A2,女生标记为B1
A1
A2
B1
A1
(A1,A2)
(A1,B1)
A2
(A2,A1)
(A2,B1)
B1
(B1,A1)
(B1,A2)
P(一男一女).
【点睛】
本题考查列表法与树状图法,频数(率)分布表,扇形统计图,中位数.
18、(1)距离是70米,速度为95米/分;(2)y=35x﹣70;(3)速度为60米/分;(4)=490米;(5)两机器人出发1.2分或2.1分或4.6分相距21米.
【解析】
(1)当x=0时的y值即为A、B两点之间的距离,由图可知当=2时,甲追上了乙,则可知(甲速度-乙速度)×时间=A、B两点之间的距离;
(2)由题意求解E、F两点坐标,再用待定系数法求解直线解析式即可;
(3)由图可知甲、乙速度相同;
(4)由乙的速度和时间可求得BC之间的距离,再加上AB之间的距离即为AC之间的距离;
(5)分0-2分钟、2-3分钟和4-7分钟三段考虑.
【详解】
解:(1)由图象可知,A、B两点之间的距离是70米,
甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;
(2)设线段EF所在直线的函数解析式为:y=kx+b,
∵1×(95﹣60)=35,
∴点F的坐标为(3,35),
则,解得,
∴线段EF所在直线的函数解析式为y=35x﹣70;
(3)∵线段FG∥x轴,
∴甲、乙两机器人的速度都是60米/分;
(4)A、C两点之间的距离为70+60×7=490米;
(5)设前2分钟,两机器人出发x分钟相距21米,
由题意得,60x+70﹣95x=21,解得,x=1.2,
前2分钟﹣3分钟,两机器人相距21米时,
由题意得,35x﹣70=21,解得,x=2.1.
4分钟﹣7分钟,直线GH经过点(4,35)和点(7,0),
设线段GH所在直线的函数解析式为:y=kx+b,则,
,解得,
则直线GH的方程为y=x+,
当y=21时,解得x=4.6,
答:两机器人出发1.2分或2.1分或4.6分相距21米.
【点睛】
本题考查了一次函数的应用,读懂图像是解题关键..
19、本次调查的学生人数为200人;B所在扇形的圆心角为,补全条形图见解析;全校每周课外阅读时间满足的约有360人.
【解析】
【分析】根据等级A的人数及所占百分比即可得出调查学生人数;
先计算出C在扇形图中的百分比,用在扇形图中的百分比可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角;
总人数课外阅读时间满足的百分比即得所求.
【详解】由条形图知,A级的人数为20人,
由扇形图知:A级人数占总调查人数的,
所以:人,
即本次调查的学生人数为200人;
由条形图知:C级的人数为60人,
所以C级所占的百分比为:,
B级所占的百分比为:,
B级的人数为人,
D级的人数为:人,
B所在扇形的圆心角为:,
补全条形图如图所示:
;
因为C级所占的百分比为,
所以全校每周课外阅读时间满足的人数为:人,
答:全校每周课外阅读时间满足的约有360人.
【点睛】本题考查了扇形图和条形图的相关知识,从统计图中找到必要的信息进行解题是关键.扇形图中某项的百分比,扇形图中某项圆心角的度数该项在扇形图中的百分比.
20、(1)见解析;(2)B点经过的路径长为π.
【解析】
(1)、连接AH,根据旋转图形的性质得出AB=AE,∠ABH=∠AEH=90°,根据AH为公共边得出Rt△ABH和Rt△AEH全等,从而得出答案;(2)、根据题意得出∠EAB的度数,然后根据弧长的计算公式得出答案.
【详解】
(1)、证明:如图1中,连接AH,
由旋转可得AB=AE,∠ABH=∠AEH=90°,又∵AH=AH,∴Rt△ABH≌Rt△AEH,∴BH=EH.
(2)、解:由旋转可得AG=AD=4,AE=AB,∠EAG=∠BAC=90°,在Rt△ABG中,AG=4,AB=2,
∴cos∠BAG=,∴∠BAG=30°,∴∠EAB=60° ,∴弧BE的长为=π,
即B点经过的路径长为π.
【点睛】
本题主要考查的是旋转图形的性质以及扇形的弧长计算公式,属于中等难度的题型.明白旋转图形的性质是解决这个问题的关键.
21、(1)见解析(2)不公平。理由见解析
【解析】
解:(1)画树状图得:
所有得到的三位数有24个,分别为:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,,413,421,423,431,432。
(2)这个游戏不公平。理由如下:
∵组成的三位数中是“伞数”的有:132,142,143,231,241,243,341,342,共有8个,
∴甲胜的概率为,乙胜的概率为。
∵甲胜的概率≠乙胜的概率,∴这个游戏不公平。
(1)首先根据题意画出树状图,由树状图即可求得所有可能得到的三位数。
(2)由(1),可求得甲胜和乙胜的概率,比较是否相等即可得到答案。
22、 (1)81;(2) 108人;(3)见解析.
【解析】
(1)根据众数的概念解答;
(2)求出九年级学生体质健康的优秀率,计算即可;
(3)分别从不同的角度进行评价.
【详解】
解:(1)由测试成绩可知,81分出现的次数最多,
∴a=81,
故答案为:81;
(2)九年级学生体质健康的优秀率为:,
九年级体质健康优秀的学生人数为:180×60%=108(人),
答:估计该校九年级体质健康优秀的学生人数为108人;
(3)①因为八年级学生的平均成绩高于九年级的平均成绩,且八年级学生成绩的方差小于九年级的方差,所以八年级学生的体质健康情况更好一些.
②因为九年级学生的优秀率(60%)高于八年级的优秀率(40%),且九年级学生成绩的众数或中位数高于八年级的众数或中位数,所以九年级学生的体质健康情况更好一些.
【点睛】
本题考查的是用样本估计总体、方差、平均数、众数和中位数的概念和性质,正确求出样本的众数、理解方差和平均数、众数、中位线的性质是解题的关键.
23、(1)答案见解析;(2)答案见解析.
【解析】
(1)根据邻补角的定义得到∠BDE=∠ACE,即可得到结论;
(2)根据相似三角形的性质得到 ,由于∠E=∠E,得到△ECD∽△EAB,由相似三角形的性质得到 ,等量代换得到,即可得到结论.
本题解析:
【详解】
证明:(1)∵∠ADB=∠ACB,∴∠BDE=∠ACE,又∵∠E=∠E,∴△ACE∽△BDE;
(2)∵△ACE∽△BDE
∴,∵∠E=∠E,∴△ECD∽△EAB,∴,∴BE•DC=AB•DE.
【点睛】
本题考查相似三角形的判定与性质,熟练掌握判定定理是关键.
24、(1)见解析;(2)+
【解析】
(1)利用题中的边的关系可求出△OAC是正三角形,然后利用角边关系又可求出∠CAB=30°,从而求出∠OAB=90°,所以判断出直线AB与⊙O相切;
(2)作AE⊥CD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD.
【详解】
(1)直线AB是⊙O的切线,理由如下:
连接OA.
∵OC=BC,AC=OB,
∴OC=BC=AC=OA,
∴△ACO是等边三角形,
∴∠O=∠OCA=60°,
又∵∠B=∠CAB,
∴∠B=30°,
∴∠OAB=90°.
∴AB是⊙O的切线.
(2)作AE⊥CD于点E.
∵∠O=60°,
∴∠D=30°.
∵∠ACD=45°,AC=OC=2,
∴在Rt△ACE中,CE=AE=;
∵∠D=30°,
∴AD=2.
【点睛】
本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
相关试卷
这是一份四川省凉山市喜德县达标名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共14页。试卷主要包含了考生必须保证答题卡的整洁,若二次函数的图象经过点,定义运算,如图,O为原点,点A的坐标为等内容,欢迎下载使用。
这是一份湖北宣恩椒园达标名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共24页。试卷主要包含了若△÷,则“△”可能是等内容,欢迎下载使用。
这是一份2021-2022学年辽宁省新宾县达标名校中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了点A,股市有风险,投资需谨慎,若2<<3,则a的值可以是,下列因式分解正确的是等内容,欢迎下载使用。
