终身会员
搜索
    上传资料 赚现金
    2021-2022学年上海市黄浦区卢湾中学中考数学仿真试卷含解析
    立即下载
    加入资料篮
    2021-2022学年上海市黄浦区卢湾中学中考数学仿真试卷含解析01
    2021-2022学年上海市黄浦区卢湾中学中考数学仿真试卷含解析02
    2021-2022学年上海市黄浦区卢湾中学中考数学仿真试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年上海市黄浦区卢湾中学中考数学仿真试卷含解析

    展开
    这是一份2021-2022学年上海市黄浦区卢湾中学中考数学仿真试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从
    点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为

    A. B. C. D.
    2.下列说法错误的是( )
    A.必然事件的概率为1
    B.数据1、2、2、3的平均数是2
    C.数据5、2、﹣3、0的极差是8
    D.如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖
    3.某同学将自己7次体育测试成绩(单位:分)绘制成折线统计图,则该同学7次测试成绩的众数和中位数分别是(  )

    A.50和48 B.50和47 C.48和48 D.48和43
    4.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是(  )

    A.56 B.58 C.63 D.72
    5.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为(  )
    A.(﹣5,3) B.(1,﹣3) C.(2,2) D.(5,﹣1)
    6.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是( )

    A. B. C. D.
    7.如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是(  )

    A.40° B.50° C.60° D.140°
    8.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为(  )

    A.1 B.3 C.5 D.1或5
    9.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为( )
    A.20% B.11% C.10% D.9.5%
    10.设a,b是常数,不等式的解集为,则关于x的不等式的解集是( )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.
    12.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有_____个.
    13.计算:(π﹣3)0+(﹣)﹣1=_____.
    14.若a2﹣2a﹣4=0,则5+4a﹣2a2=_____.
    15.有下列各式:①;②;③;④.其中,计算结果为分式的是_____.(填序号)
    16.计算tan260°﹣2sin30°﹣cos45°的结果为_____.
    三、解答题(共8题,共72分)
    17.(8分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题:
    (1)A组的频数a比B组的频数b小24,样本容量   ,a为   :
    (2)n为   °,E组所占比例为   %:
    (3)补全频数分布直方图;
    (4)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀学生有   名.

    18.(8分)(1)计算:﹣14+sin61°+()﹣2﹣(π﹣)1.
    (2)解不等式组,并把它的解集在数轴上表示出来.
    19.(8分)已知点P,Q为平面直角坐标系xOy中不重合的两点,以点P为圆心且经过点Q作⊙P,则称点Q为⊙P的“关联点”,⊙P为点Q的“关联圆”.
    (1)已知⊙O的半径为1,在点E(1,1),F(﹣,),M(0,-1)中,⊙O的“关联点”为______;
    (2)若点P(2,0),点Q(3,n),⊙Q为点P的“关联圆”,且⊙Q的半径为,求n的值;
    (3)已知点D(0,2),点H(m,2),⊙D是点H的“关联圆”,直线y=﹣x+4与x轴,y轴分别交于点A,B.若线段AB上存在⊙D的“关联点”,求m的取值范围.
    20.(8分)某商店销售两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需280元;购买3个A品牌和1个B品牌的计算器共需210元.
    (Ⅰ)求这两种品牌计算器的单价;
    (Ⅱ)开学前,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的九折销售,B品牌计算器10个以上超出部分按原价的七折销售.设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1,y2关于x的函数关系式.
    (Ⅲ)某校准备集体购买同一品牌的计算器,若购买计算器的数量超过15个,购买哪种品牌的计算器更合算?请说明理由.
    21.(8分)问题探究
    (1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;
    (2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;
    问题解决
    (3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长,若不存在,请说明理由.

    22.(10分)如图,中,于,点分别是的中点.

    (1)求证:四边形是菱形
    (2)如果,求四边形的面积
    23.(12分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:).

    24.计算



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    分析:分析y随x的变化而变化的趋势,应用排它法求解,而不一定要通过求解析式来解决:
    ∵等边三角形ABC的边长为3,N为AC的三等分点,
    ∴AN=1。∴当点M位于点A处时,x=0,y=1。
    ①当动点M从A点出发到AM=的过程中,y随x的增大而减小,故排除D;
    ②当动点M到达C点时,x=6,y=3﹣1=2,即此时y的值与点M在点A处时的值不相等,故排除A、C。
    故选B。
    2、D
    【解析】
    试题分析:A.概率值反映了事件发生的机会的大小,必然事件是一定发生的事件,所以概率为1,本项正确;
    B.数据1、2、2、3的平均数是=2,本项正确;
    C.这些数据的极差为5﹣(﹣3)=8,故本项正确;
    D.某种游戏活动的中奖率为40%,属于不确定事件,可能中奖,也可能不中奖,故本说法错误,
    故选D.
    考点:1.概率的意义;2.算术平均数;3.极差;4.随机事件
    3、A
    【解析】
    由折线统计图,可得该同学7次体育测试成绩,进而求出众数和中位数即可.
    【详解】
    由折线统计图,得:42,43,47,48,49,50,50,
    7次测试成绩的众数为50,中位数为48,
    故选:A.
    【点睛】
    本题考查了众数和中位数,解题的关键是利用折线统计图获取有效的信息.
    4、B
    【解析】
    试题分析:第一个图形的小圆数量=1×2+2=4;第二个图形的小圆数量=2×3+2=8;第三个图形的小圆数量=3×4+2=14;则第n个图形的小圆数量=n(n+1)+2个,则第七个图形的小圆数量=7×8+2=58个.
    考点:规律题
    5、C
    【解析】
    【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.
    【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,
    ∴k>0,
    A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合题意;
    B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;
    C、把点(2,2)代入y=kx﹣1得到:k=>0,符合题意;
    D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,
    故选C.
    【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.
    6、A
    【解析】
    根据俯视图即从物体的上面观察得得到的视图,进而得出答案.
    【详解】
    该几何体的俯视图是:.
    故选A.
    【点睛】
    此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.
    7、A
    【解析】
    试题分析:根据直角三角形两锐角互余求出∠3,再根据两直线平行,同位角相等解答.
    解:∵DB⊥BC,∠2=50°,
    ∴∠3=90°﹣∠2=90°﹣50°=40°,
    ∵AB∥CD,
    ∴∠1=∠3=40°.
    故选A.

    8、D
    【解析】
    分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.
    【详解】
    当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,
    当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,
    故选D.
    【点睛】
    本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.
    9、C
    【解析】
    设二,三月份平均每月降价的百分率为,则二月份为,三月份为,然后再依据第三个月售价为1,列出方程求解即可.
    【详解】
    解:设二,三月份平均每月降价的百分率为.
    根据题意,得=1.
    解得,(不合题意,舍去).
    答:二,三月份平均每月降价的百分率为10%
    【点睛】
    本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a,每次降价的百分率为a,则第一次降价后为a(1-x);第二次降价后后为a(1-x)2,即:原数x(1-降价的百分率)2=后两次数.
    10、C
    【解析】
    根据不等式的解集为x< 即可判断a,b的符号,则根据a,b的符号,即可解不等式bx-a<0
    【详解】
    解不等式,
    移项得:
    ∵解集为x<
    ∴ ,且a<0
    ∴b=-5a>0,
    解不等式,
    移项得:bx>a
    两边同时除以b得:x>,
    即x>-
    故选C
    【点睛】
    此题考查解一元一次不等式,掌握运算法则是解题关键

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1
    【解析】
    底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.
    【详解】
    试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.
    ②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=1cm.
    故填1.
    【点睛】
    本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.
    12、1.
    【解析】
    由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.
    【详解】
    设白球个数为:x个,
    ∵摸到红色球的频率稳定在25%左右,
    ∴口袋中得到红色球的概率为25%,
    ∴=,
    解得:x=1,
    故白球的个数为1个.
    故答案为:1.
    【点睛】
    此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.
    13、-1
    【解析】
    先计算0指数幂和负指数幂,再相减.
    【详解】
    (π﹣3)0+(﹣)﹣1,
    =1﹣3,
    =﹣1,
    故答案是:﹣1.
    【点睛】
    考查了0指数幂和负指数幂,解题关键是运用任意数的0次幂为1,a-1=.
    14、-3
    【解析】
    试题解析:∵ 即
    ∴原式
    故答案为
    15、②④
    【解析】
    根据分式的定义,将每个式子计算后,即可求解.
    【详解】
    =1不是分式,=,=3不是分式,=故选②④.
    【点睛】
    本题考查分式的判断,解题的关键是清楚分式的定义.
    16、1
    【解析】
    分别算三角函数,再化简即可.
    【详解】
    解:原式=-2×-×
    =1.
    【点睛】
    本题考查掌握简单三角函数值,较基础.

    三、解答题(共8题,共72分)
    17、(1)200;16(2)126;12%(3)见解析(4)940
    【解析】
    分析:(1)由于A组的频数比B组小24,而A组的频率比B组小12%,则可计算出调查的总人数,然后计算a和b的值;(2)用360度乘以D组的频率可得到n的值,根据百分比之和为1可得E组百分比;(3)计算出C和E组的频数后补全频数分布直方图;(4)利用样本估计总体,用2000乘以D组和E组的频率和即可.
    本题解析:
    ()调查的总人数为,
    ∴,

    ()部分所对的圆心角,即,
    组所占比例为:,
    ()组的频数为,组的频数为,
    补全频数分布直方图为:

    (),
    ∴估计成绩优秀的学生有人.
    点睛:本题考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,要认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查了用样本估计总体.
    18、(1)5;(2)﹣2≤x<﹣.
    【解析】
    (1)原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值以及二次根式的乘法计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算,然后根据实数的运算法则计算即可得到结果;
    (2)先求出两个不等式的解集,再找出解集的公共部分即可.
    【详解】
    (1)原式

    =5;
    (2)解不等式①得,x≥﹣2,
    解不等式②得,
    所以不等式组的解集是
    用数轴表示为:

    【点睛】
    本题考查了实数的混合运算,特殊角的三角函数值,负整数指数幂,零指数幂,不等式组的解法,是综合题,但难度不大,计算时要注意运算符号的处理以及解集公共部分的确定.
    19、(1)F,M;(1)n=1或﹣1;(3)≤m≤或 ≤m≤.
    【解析】
    (1)根据定义,认真审题即可解题,
    (1)在直角三角形PHQ中勾股定理解题即可,
    (3)当⊙D与线段AB相切于点T时,由sin∠OBA=,得DT=DH1=,进而求出m1=即可,②当⊙D过点A时,连接AD.由勾股定理得DA==DH1=即可解题.
    【详解】
    解:(1)∵OF=OM=1,
    ∴点F、点M在⊙上,
    ∴F、M是⊙O的“关联点”,
    故答案为F,M.
    (1)如图1,过点Q作QH⊥x轴于H.

    ∵PH=1,QH=n,PQ=.
    ∴由勾股定理得,PH1+QH1=PQ1,
    即11+n1=()1,
    解得,n=1或﹣1.
    (3)由y=﹣x+4,知A(3,0),B(0,4)
    ∴可得AB=5
    ①如图1(1),当⊙D与线段AB相切于点T时,连接DT.

    则DT⊥AB,∠DTB=90°
    ∵sin∠OBA=,
    ∴可得DT=DH1=,
    ∴m1=,
    ②如图1(1),当⊙D过点A时,连接AD.

    由勾股定理得DA==DH1=.
    综合①②可得:≤m≤或 ≤m≤.
    【点睛】
    本题考查圆的新定义问题, 三角函数和勾股定理的应用,难度较大,分类讨论,迁移知识理解新定义是解题关键.
    20、(1)A种品牌计算器50元/个,B种品牌计算器60元/个;(2)y1=45x, y2= ;(3)详见解析.
    【解析】
    (1)根据题意列出二元一次方程组并求解即可;
    (2)按照“购买所需费用=折扣×单价×数量”列式即可,注意B品牌计算器的采购要分0≤x≤10和x>10两种情况考虑;
    (3)根据上问所求关系式,分别计算当x>15时,由y1=y2、y1>y2、y1<y2确定其分别对应的销量范围,从而确定方案.
    【详解】
    (Ⅰ)设A、B两种品牌的计算器的单价分别为a元、b元,
    根据题意得,,
    解得:,
    答:A种品牌计算器50元/个,B种品牌计算器60元/个;
    (Ⅱ)A品牌:y1=50x•0.9=45x;
    B品牌:①当0≤x≤10时,y2=60x,
    ②当x>10时,y2=10×60+60×(x﹣10)×0.7=42x+180,
    综上所述:
    y1=45x,
    y2=;
    (Ⅲ)当y1=y2时,45x=42x+180,解得x=60,即购买60个计算器时,两种品牌都一样;
    当y1>y2时,45x>42x+180,解得x>60,即购买超过60个计算器时,B品牌更合算;
    当y1<y2时,45x<42x+180,解得x<60,即购买不足60个计算器时,A品牌更合算,
    当购买数量为15时,显然购买A品牌更划算.
    【点睛】
    本题考查了二元一次方程组的应用.
    21、(1)1;2-;;(1)4+;(4)(200-25-40)米.
    【解析】
    (1)由于△PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题.
    (1)以EF为直径作⊙O,易证⊙O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长.
    (4)要满足∠AMB=40°,可构造以AB为边的等边三角形的外接圆,该圆与线段CD的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长.
    【详解】
    (1)①作AD的垂直平分线交BC于点P,如图①,
    则PA=PD.
    ∴△PAD是等腰三角形.
    ∵四边形ABCD是矩形,
    ∴AB=DC,∠B=∠C=90°.
    ∵PA=PD,AB=DC,
    ∴Rt△ABP≌Rt△DCP(HL).
    ∴BP=CP.
    ∵BC=2,
    ∴BP=CP=1.
    ②以点D为圆心,AD为半径画弧,交BC于点P′,如图①,
    则DA=DP′.

    ∴△P′AD是等腰三角形.
    ∵四边形ABCD是矩形,
    ∴AD=BC,AB=DC,∠C=90°.
    ∵AB=4,BC=2,
    ∴DC=4,DP′=2.
    ∴CP′==.
    ∴BP′=2-.
    ③点A为圆心,AD为半径画弧,交BC于点P″,如图①,
    则AD=AP″.
    ∴△P″AD是等腰三角形.
    同理可得:BP″=.
    综上所述:在等腰三角形△ADP中,
    若PA=PD,则BP=1;
    若DP=DA,则BP=2-;
    若AP=AD,则BP=.
    (1)∵E、F分别为边AB、AC的中点,
    ∴EF∥BC,EF=BC.
    ∵BC=11,
    ∴EF=4.
    以EF为直径作⊙O,过点O作OQ⊥BC,垂足为Q,连接EQ、FQ,如图②.

    ∵AD⊥BC,AD=4,
    ∴EF与BC之间的距离为4.
    ∴OQ=4
    ∴OQ=OE=4.
    ∴⊙O与BC相切,切点为Q.
    ∵EF为⊙O的直径,
    ∴∠EQF=90°.
    过点E作EG⊥BC,垂足为G,如图②.
    ∵EG⊥BC,OQ⊥BC,
    ∴EG∥OQ.
    ∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,
    ∴四边形OEGQ是正方形.
    ∴GQ=EO=4,EG=OQ=4.
    ∵∠B=40°,∠EGB=90°,EG=4,
    ∴BG=.
    ∴BQ=GQ+BG=4+.
    ∴当∠EQF=90°时,BQ的长为4+.
    (4)在线段CD上存在点M,使∠AMB=40°.
    理由如下:
    以AB为边,在AB的右侧作等边三角形ABG,
    作GP⊥AB,垂足为P,作AK⊥BG,垂足为K.
    设GP与AK交于点O,以点O为圆心,OA为半径作⊙O,
    过点O作OH⊥CD,垂足为H,如图③.

    则⊙O是△ABG的外接圆,
    ∵△ABG是等边三角形,GP⊥AB,
    ∴AP=PB=AB.
    ∵AB=170,
    ∴AP=145.
    ∵ED=185,
    ∴OH=185-145=6.
    ∵△ABG是等边三角形,AK⊥BG,
    ∴∠BAK=∠GAK=40°.
    ∴OP=AP•tan40°
    =145×
    =25.
    ∴OA=1OP=90.
    ∴OH<OA.
    ∴⊙O与CD相交,设交点为M,连接MA、MB,如图③.
    ∴∠AMB=∠AGB=40°,OM=OA=90..
    ∵OH⊥CD,OH=6,OM=90,
    ∴HM==40.
    ∵AE=200,OP=25,
    ∴DH=200-25.
    若点M在点H的左边,则DM=DH+HM=200-25+40.
    ∵200-25+40>420,
    ∴DM>CD.
    ∴点M不在线段CD上,应舍去.
    若点M在点H的右边,则DM=DH-HM=200-25-40.
    ∵200-25-40<420,
    ∴DM<CD.
    ∴点M在线段CD上.
    综上所述:在线段CD上存在唯一的点M,使∠AMB=40°,
    此时DM的长为(200-25-40)米.
    【点睛】
    本题考查了垂直平分线的性质、矩形的性质、等边三角形的性质、正方形的判定与性质、直线与圆的位置关系、圆周角定理、三角形的中位线定理、全等三角形的判定与性质、勾股定理、特殊角的三角函数值等知识,考查了操作、探究等能力,综合性非常强.而构造等边三角形及其外接圆是解决本题的关键.
    22、 (1)证明见解析;(2).
    【解析】
    (1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;
    (2)根据等边三角形的性质得出EF=5,AD=5,进而得到菱形AEDF的面积S.
    【详解】
    解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,
    ∴Rt△ABD中,DE=AB=AE,
    Rt△ACD中,DF=AC=AF,
    又∵AB=AC,点E、F分别是AB、AC的中点,
    ∴AE=AF,
    ∴AE=AF=DE=DF,
    ∴四边形AEDF是菱形;
    (2)如图,

    ∵AB=AC=BC=10,
    ∴EF=5,AD=5,
    ∴菱形AEDF的面积S=EF•AD=×5×5=.
    【点睛】
    本题考查菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半.
    23、5.7米.
    【解析】
    试题分析:由题意,过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.
    试题解析:解:如答图,过点A作AH⊥CD,垂足为H,
    由题意可知四边形ABDH为矩形,∠CAH=30°,
    ∴AB=DH=1.5,BD=AH=6.
    在Rt△ACH中,CH=AH•tan∠CAH=6tan30°=6×,
    ∵DH=1.5,∴CD=+1.5.
    在Rt△CDE中,∵∠CED=60°,∴CE=(米).
    答:拉线CE的长约为5.7米.

    考点:1.解直角三角形的应用(仰角俯角问题);2.锐角三角函数定义;3.特殊角的三角函数值;4.矩形的判定和性质.
    24、
    【解析】
    先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解后约分即可.
    【详解】
    原式=,
    =,
    =,
    =.
    【点睛】
    本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.

    相关试卷

    上海市黄浦区卢湾中学2023-2024学年九上数学期末统考试题含答案: 这是一份上海市黄浦区卢湾中学2023-2024学年九上数学期末统考试题含答案,共8页。试卷主要包含了如图,等内容,欢迎下载使用。

    上海市黄浦区卢湾中学2023-2024学年八上数学期末经典模拟试题含答案: 这是一份上海市黄浦区卢湾中学2023-2024学年八上数学期末经典模拟试题含答案,共7页。试卷主要包含了下列运算错误的是,化简的结果是等内容,欢迎下载使用。

    上海市黄浦区卢湾中学2022-2023学年数学七下期末经典模拟试题含答案: 这是一份上海市黄浦区卢湾中学2022-2023学年数学七下期末经典模拟试题含答案,共7页。试卷主要包含了的倒数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map