2021-2022学年四川省凉山重点中学中考数学对点突破模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下图是由八个相同的小正方体组合而成的几何体,其左视图是( )
A. B. C. D.
2.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是( )
A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E
3.满足不等式组的整数解是( )
A.﹣2 B.﹣1 C.0 D.1
4.二次函数的图象如图所示,则下列各式中错误的是( )
A.abc>0 B.a+b+c>0 C.a+c>b D.2a+b=0
5.如图,一次函数和反比例函数的图象相交于,两点,则使成立的取值范围是( )
A.或 B.或
C.或 D.或
6.x=1是关于x的方程2x﹣a=0的解,则a的值是( )
A.﹣2 B.2 C.﹣1 D.1
7.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是( )
A. B. C. D.
8.在平面直角坐标系xOy中,若点P(3,4)在⊙O内,则⊙O的半径r的取值范围是( )
A.0<r<3 B.r>4 C.0<r<5 D.r>5
9.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为( )
A.m> B.m C.m= D.m=
10.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交
AB于G,连接DG,现在有如下4个结论:①≌;②;③∠GDE=45°;④
DG=DE在以上4个结论中,正确的共有( )个
A.1个 B.2 个 C.3 个 D.4个
11.下列安全标志图中,是中心对称图形的是( )
A. B. C. D.
12.将一根圆柱形的空心钢管任意放置,它的主视图不可能是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若a、b为实数,且b=+4,则a+b=_____.
14.如图,AB为半圆的直径,且AB=2,半圆绕点B顺时针旋转40°,点A旋转到A′的位置,则图中阴影部分的面积为_____(结果保留π).
15.如图,点G是△ABC的重心,CG的延长线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG绕点D旋转180°得到△BDE,△ABC的面积=_____cm1.
16.如果2,那么=_____(用向量,表示向量).
17.分式方程的解是 .
18.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.
20.(6分)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与x轴交于点A(1,0)和点B(﹣3,0).绕点A旋转的直线l:y=kx+b1交抛物线于另一点D,交y轴于点C.
(1)求抛物线的函数表达式;
(2)当点D在第二象限且满足CD=5AC时,求直线l的解析式;
(3)在(2)的条件下,点E为直线l下方抛物线上的一点,直接写出△ACE面积的最大值;
(4)如图2,在抛物线的对称轴上有一点P,其纵坐标为4,点Q在抛物线上,当直线l与y轴的交点C位于y轴负半轴时,是否存在以点A,D,P,Q为顶点的平行四边形?若存在,请直接写出点D的横坐标;若不存在,请说明理由.
21.(6分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(Ⅰ)图①中的值为 ;
(Ⅱ)求统计的这组数据的平均数、众数和中位数;
(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为的约有多少只?
22.(8分)解方程:.
23.(8分)(1)问题发现:
如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为 ;
(2)深入探究:
如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;
(3)拓展延伸:
如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=,试求EF的长.
24.(10分)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距离分别为40cm、8cm.为使板凳两腿底端A、D之间的距离为50cm,那么横梁EF应为多长?(材质及其厚度等暂忽略不计).
25.(10分)列方程解应用题:某景区一景点要限期完成,甲工程队单独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,则工程期限为多少天?
26.(12分)学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练。王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的跳远成绩,将两次测得的成绩制作成图所示的统计图和不完整的统计表(满分10分,得分均为整数).
根据以上信息回答下列问题:训练后学生成绩统计表中,并补充完成下表:
若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?经调查,经过训练后得到9分的五名同学中,有三名男生和两名女生,王老师要从这五名同学中随机抽取两名同学写出训练报告,请用列表或画树状图的方法,求所抽取的两名同学恰好是一男一女的概率.
27.(12分)已知直线y=mx+n(m≠0,且m,n为常数)与双曲线y=(k<0)在第一象限交于A,B两点,C,D是该双曲线另一支上两点,且A、B、C、D四点按顺时针顺序排列.
(1)如图,若m=﹣,n=,点B的纵坐标为,
①求k的值;
②作线段CD,使CD∥AB且CD=AB,并简述作法;
(2)若四边形ABCD为矩形,A的坐标为(1,5),
①求m,n的值;
②点P(a,b)是双曲线y=第一象限上一动点,当S△APC≥24时,则a的取值范围是 .
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
解:找到从左面看所得到的图形,从左面可看到从左往右三列小正方形的个数为:2,3,1.
故选B.
2、C
【解析】
根据平行线性质和全等三角形的判定定理逐个分析.
【详解】
由,得∠B=∠D,
因为,
若≌,则还需要补充的条件可以是:
AB=DE,或∠E=∠A, ∠EFD=∠ACB,
故选C
【点睛】
本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.
3、C
【解析】
先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.
【详解】
∵解不等式①得:x≤0.5,
解不等式②得:x>-1,
∴不等式组的解集为-1<x≤0.5,
∴不等式组的整数解为0,
故选C.
【点睛】
本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集找出不等式组的解集是解此题的关键.
4、B
【解析】
根据二次函数的图象与性质逐一判断即可.
【详解】
解:由图象可知抛物线开口向上,
∴,
∵对称轴为,
∴,
∴,
∴,故D正确,
又∵抛物线与y轴交于y轴的负半轴,
∴,
∴,故A正确;
当x=1时,,
即,故B错误;
当x=-1时,
即,
∴,故C正确,
故答案为:B.
【点睛】
本题考查了二次函数图象与系数之间的关系,解题的关键是熟练掌握二次函数各系数的意义以及二次函数的图象与性质.
5、B
【解析】
根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.
【详解】
观察函数图象可发现:或时,一次函数图象在反比例函数图象上方,
∴使成立的取值范围是或,
故选B.
【点睛】
本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.
6、B
【解析】
试题解析:把x=1代入方程1x-a=0得1-a=0,解得a=1.
故选B.
考点:一元一次方程的解.
7、C
【解析】
由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.
【详解】
由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,
所以其主视图为:
故选C.
【点睛】
考查了三视图的知识,主视图是从物体的正面看得到的视图.
8、D
【解析】
先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r的范围.
【详解】
∵点P的坐标为(3,4),∴OP1.
∵点P(3,4)在⊙O内,∴OP<r,即r>1.
故选D.
【点睛】
本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.
9、C
【解析】
试题解析:∵一元二次方程2x2+3x+m=0有两个相等的实数根,
∴△=32-4×2m=9-8m=0,
解得:m=.
故选C.
10、C
【解析】
【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得∠GDE==45〫,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断④是错误的.
【详解】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,
∴∠DFG=∠A=90°,
∴△ADG≌△FDG,①正确;
∵正方形边长是12,
∴BE=EC=EF=6,
设AG=FG=x,则EG=x+6,BG=12﹣x,
由勾股定理得:EG2=BE2+BG2,
即:(x+6)2=62+(12﹣x)2,
解得:x=4
∴AG=GF=4,BG=8,BG=2AG,②正确;
∵△ADG≌△FDG,△DCE≌△DFE,
∴∠ADG=∠FDG,∠FDE=∠CDE
∴∠GDE==45〫.③正确;
BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④错误;
∴正确说法是①②③
故选:C
【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度.
11、B
【解析】
试题分析:A.不是中心对称图形,故此选项不合题意;
B.是中心对称图形,故此选项符合题意;
C.不是中心对称图形,故此选项不符合题意;
D.不是中心对称图形,故此选项不合题意;
故选B.
考点:中心对称图形.
12、A
【解析】
试题解析:∵一根圆柱形的空心钢管任意放置,
∴不管钢管怎么放置,它的三视图始终是,,,主视图是它们中一个,
∴主视图不可能是.
故选A.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、5或1
【解析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a的值,b的值,根据有理数的加法,可得答案.
【详解】
由被开方数是非负数,得
,
解得a=1,或a=﹣1,b=4,
当a=1时,a+b=1+4=5,
当a=﹣1时,a+b=﹣1+4=1,
故答案为5或1.
【点睛】
本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.
14、
【解析】
【分析】根据题意可得出阴影部分的面积等于扇形ABA′的面积加上半圆面积再减去半圆面积.
【详解】∵S阴影=S扇形ABA′+S半圆-S半圆
=S扇形ABA′
=
=,
故答案为.
【点睛】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式且能准确识图是解题的关键.
15、18
【解析】
三角形的重心是三条中线的交点,根据中线的性质,S△ACD=S△BCD;再利用勾股定理逆定理证明BG⊥CE,从而得出△BCD的高,可求△BCD的面积.
【详解】
∵点G是△ABC的重心,
∴
∵GB=3,EG=GC=4,BE=GA=5,
∴,即BG⊥CE,
∵CD为△ABC的中线,
∴
∴
故答案为:18.
【点睛】
考查三角形重心的性质,中线的性质,旋转的性质,勾股定理逆定理等,综合性比较强,对学生要求较高.
16、
【解析】
∵2(+)=+,∴2+2=+,∴=-2,
故答案为.
点睛:本题看成平面向量、一元一次方程等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.
17、x=﹣1.
【解析】
试题分析:分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
试题解析:去分母得:x=2x﹣1+2,
解得:x=﹣1,
经检验x=﹣1是分式方程的解.
考点:解分式方程.
18、-2
【解析】
试题分析:根据题意可得2k+3>2,k<2,解得﹣<k<2.因k为整数,所以k=﹣2.
考点:一次函数图象与系数的关系.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、证明见解析.
【解析】
【分析】利用AAS先证明∆ABH≌∆DCG,根据全等三角形的性质可得AH=DG,再根据AH=AG+GH,DG=DH+GH即可证得AG=HD.
【详解】∵AB∥CD,∴∠A=∠D,
∵CE∥BF,∴∠AHB=∠DGC,
在∆ABH和∆DCG中,
,
∴∆ABH≌∆DCG(AAS),∴AH=DG,
∵AH=AG+GH,DG=DH+GH,∴AG=HD.
【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.
20、(1)y=x2+x﹣;(2)y=﹣x+1;(3)当x=﹣2时,最大值为;(4)存在,点D的横坐标为﹣3或或﹣.
【解析】
(1)设二次函数的表达式为:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即可求解;
(2)OC∥DF,则 即可求解;
(3)由S△ACE=S△AME﹣S△CME即可求解;
(4)分当AP为平行四边形的一条边、对角线两种情况,分别求解即可.
【详解】
(1)设二次函数的表达式为:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,
即: 解得:
故函数的表达式为: ①;
(2)过点D作DF⊥x轴交于点F,过点E作y轴的平行线交直线AD于点M,
∵OC∥DF,∴OF=5OA=5,
故点D的坐标为(﹣5,6),
将点A、D的坐标代入一次函数表达式:y=mx+n得:,解得:
即直线AD的表达式为:y=﹣x+1,
(3)设点E坐标为 则点M坐标为
则
∵故S△ACE有最大值,
当x=﹣2时,最大值为;
(4)存在,理由:
①当AP为平行四边形的一条边时,如下图,
设点D的坐标为
将点A向左平移2个单位、向上平移4个单位到达点P的位置,
同样把点D左平移2个单位、向上平移4个单位到达点Q的位置,
则点Q的坐标为
将点Q的坐标代入①式并解得:
②当AP为平行四边形的对角线时,如下图,
设点Q坐标为点D的坐标为(m,n),
AP中点的坐标为(0,2),该点也是DQ的中点,
则: 即:
将点D坐标代入①式并解得:
故点D的横坐标为:或或.
【点睛】
本题考查的是二次函数综合运用,涉及到图形平移、平行四边形的性质等,关键是(4)中,用图形平移的方法求解点的坐标,本题难度大.
21、(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.
【解析】
分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;
(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;
(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.
解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;
(Ⅱ)观察条形统计图,
∵,
∴这组数据的平均数是1.52.
∵在这组数据中,1.8出现了16次,出现的次数最多,
∴这组数据的众数为1.8.
∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,
∴这组数据的中位数为1.5.
(Ⅲ)∵在所抽取的样本中,质量为的数量占.
∴由样本数据,估计这2500只鸡中,质量为的数量约占.
有.
∴这2500只鸡中,质量为的约有200只.
点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
22、
【解析】
分析:此题应先将原分式方程两边同时乘以最简公分母,则原分式方程可化为整式方程,解出即可.
详解:去分母,得.
去括号,得.
移项,得 .
合并同类项,得 .
系数化为1,得.
经检验,原方程的解为.
点睛:本题主要考查分式方程的解法.注意:解分式方程必须检验.
23、(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3);
【解析】
(1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.
(2)根据△ABC,△AMN为等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根据相似三角形的性质得到,利用等腰三角形的性质得到∠BAC=∠MAN,根据相似三角形的性质即可得到结论;
(3)如图3,连接AB,AN,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出,得到BM=2,CM=8,再根据勾股定理即可得到答案.
【详解】
(1)NC∥AB,理由如下:
∵△ABC与△MN是等边三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAM=∠CAN,
在△ABM与△ACN中,
,
∴△ABM≌△ACN(SAS),
∴∠B=∠ACN=60°,
∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,
∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,
∴CN∥AB;
(2)∠ABC=∠ACN,理由如下:
∵=1且∠ABC=∠AMN,
∴△ABC~△AMN
∴,
∵AB=BC,
∴∠BAC=(180°﹣∠ABC),
∵AM=MN
∴∠MAN=(180°﹣∠AMN),
∵∠ABC=∠AMN,
∴∠BAC=∠MAN,
∴∠BAM=∠CAN,
∴△ABM~△ACN,
∴∠ABC=∠ACN;
(3)如图3,连接AB,AN,
∵四边形ADBC,AMEF为正方形,
∴∠ABC=∠BAC=45°,∠MAN=45°,
∴∠BAC﹣∠MAC=∠MAN﹣∠MAC
即∠BAM=∠CAN,
∵,
∴,
∴△ABM~△ACN
∴,
∴=cos45°=,
∴,
∴BM=2,
∴CM=BC﹣BM=8,
在Rt△AMC,
AM=,
∴EF=AM=2.
【点睛】
本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.
24、44cm
【解析】
解:如图,
设BM与AD相交于点H,CN与AD相交于点G,
由题意得,MH=8cm,BH=40cm,则BM=32cm,
∵四边形ABCD是等腰梯形,AD=50cm,BC=20cm,
∴.
∵EF∥CD,∴△BEM∽△BAH.
∴,即,解得:EM=1.
∴EF=EM+NF+BC=2EM+BC=44(cm).
答:横梁EF应为44cm.
根据等腰梯形的性质,可得AH=DG,EM=NF,先求出AH、GD的长度,再由△BEM∽△BAH,可得出EM,继而得出EF的长度.
25、15天
【解析】
试题分析:首先设规定的工期是x天,则甲工程队单独做需(x-1)天,乙工程队单独做需(x+6)天,根据题意可得等量关系:乙工程队干x天的工作量+甲工程队干4天的工作量=1,根据等量关系列出方程,解方程即可.
试题解析:设工程期限为x天.
根据题意得,
解得:x=15.
经检验x=15是原分式方程的解.
答:工程期限为15天.
26、(1),见解析;(2)125人;(3)
【解析】
(1)利用强化训练前后人数不变计算n的值;利用中位数对应计算强化训练前的中位数;利用平均数的计算方法计算强化训练后的平均分;利用众数的定义确定强化训练后的众数;
(2)用500分别乘以样本中训练前后优秀的人数的百分比,然后求差即可;
(3)画树状图展示所有20种等可能的结果数,再找出所抽取的两名同学恰好是一男一女的结果数,然后根据概率公式求解.
【详解】
(1)解:(1)n=20-1-3-8-5=3;
强化训练前的中位数,
强化训练后的平均分为(1×6+3×7+8×8+9×5+10×3)=8.3;
强化训练后的众数为8,
故答案为3;7.5;8.3;8;
(2)(人)
(3)(3)画树状图为:
共有20种等可能的结果数,其中所抽取的两名同学恰好是一男一女的结果数为12,
所以所抽取的两名同学恰好是一男一女的概率P=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.
27、(1)①k= 5;②见解析,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;(2)①;②0<a<1或a>5
【解析】
(1)①求出直线的解析式,利用待定系数法即可解决问题;②如图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;
(2)①求出A,B两点坐标,利用待定系数法即可解决问题;②分两种情形求出△PAC的面积=24时a的值,即可判断.
【详解】
(1)①∵,,
∴直线的解析式为,
∵点B在直线上,纵坐标为,
∴,
解得x=2
∴,
∴;
②如下图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;
(2)①∵点在上,
∴k=5,
∵四边形ABCD是矩形,
∴OA=OB=OC=OD,
∴A,B关于直线y=x对称,
∴,
则有:,解得;
②如下图,当点P在点A的右侧时,作点C关于y轴的对称点C′,连接AC,AC′,PC,PC′,PA.
∵A,C关于原点对称,,
∴,
∵,
当时,
∴,
∴,
∴a=5或(舍弃),
当点P在点A的左侧时,同法可得a=1,
∴满足条件的a的范围为或.
【点睛】
本题属于反比例函数与一次函数的综合问题,熟练掌握待定系数法解函数解析式以及交点坐标的求法是解决本题的关键.
连云港市重点中学2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份连云港市重点中学2021-2022学年中考数学对点突破模拟试卷含解析,共26页。试卷主要包含了对于一组统计数据等内容,欢迎下载使用。
河南省周口川汇区重点中学2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份河南省周口川汇区重点中学2021-2022学年中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了平面直角坐标系中的点P等内容,欢迎下载使用。
赣州市重点中学2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份赣州市重点中学2021-2022学年中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了答题时请按要求用笔,下列计算中正确的是,的相反数是,已知等内容,欢迎下载使用。