2021-2022学年铜陵市重点中学中考猜题数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,正方形被分割成四部分,其中I、II为正方形,III、IV为长方形,I、II的面积之和等于III、IV面积之和的2倍,若II的边长为2,且I的面积小于II的面积,则I的边长为( )
A.4 B.3 C. D.
2.如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )
A.y=(x﹣2)2-2 B.y=(x﹣2)2+7
C.y=(x﹣2)2-5 D.y=(x﹣2)2+4
3.计算(﹣5)﹣(﹣3)的结果等于( )
A.﹣8 B.8 C.﹣2 D.2
4.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
A.48 B.60
C.76 D.80
5.如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为( )
A.2π﹣ B.π+ C.π+2 D.2π﹣2
6.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=24°,则∠BDC的度数为( )
A.42° B.66° C.69° D.77°
7.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是( )
A.1 B.2 C.3 D.4
8.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )
A. B. C. D.
9.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )
A.(a+b)(a﹣b)=a2﹣b2 B.(a﹣b)2=a2﹣2ab+b2
C.(a+b)2=a2+2ab+b2 D.(a+b)2=(a﹣b)2+4ab
10.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是( )
A.掷一枚正六面体的骰子,出现1点的概率
B.抛一枚硬币,出现正面的概率
C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率
D.任意写一个整数,它能被2整除的概率
11.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是( )
A. B. C. D.
12.下列计算正确的是( )
A.=±3 B.﹣32=9 C.(﹣3)﹣2= D.﹣3+|﹣3|=﹣6
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.在数轴上与所对应的点相距4个单位长度的点表示的数是______.
14.已知是二元一次方程组的解,则m+3n的立方根为__.
15.一个正n边形的中心角等于18°,那么n=_____.
16.某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.该年级共有700人,估计该年级足球测试成绩为D等的人数为_____人.
17.分解因式___________
18.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值
是 .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,海中有一个小岛 A,该岛四周 11 海里范围内有暗礁.有一货轮在海面上由西向正东方向航行,到达B处时它在小岛南偏西60°的方向上,再往正东方向行驶10海里后恰好到达小岛南偏西45°方向上的点C处.问:如果货轮继续向正东方向航行,是否会有触礁的危险?(参考数据:≈1.41,≈1.73)
20.(6分)阅读材料,解答问题.
材料:“小聪设计的一个电子游戏是:一电子跳蚤从这P1(﹣3,9)开始,按点的横坐标依次增加1的规律,在抛物线y=x2上向右跳动,得到点P2、P3、P4、P5…(如图1所示).过P1、P2、P3分别作P1H1、P2H2、P3H3垂直于x轴,垂足为H1、H2、H3,则S△P1P2P3=S梯形P1H1H3P3﹣S梯形P1H1H2P2﹣S梯形P2H2H3P3=(9+1)×2﹣(9+4)×1﹣(4+1)×1,即△P1P2P3的面积为1.”
问题:
(1)求四边形P1P2P3P4和P2P3P4P5的面积(要求:写出其中一个四边形面积的求解过程,另一个直接写出答案);
(2)猜想四边形Pn﹣1PnPn+1Pn+2的面积,并说明理由(利用图2);
(3)若将抛物线y=x2改为抛物线y=x2+bx+c,其它条件不变,猜想四边形Pn﹣1PnPn+1Pn+2的面积(直接写出答案).
21.(6分)在平面直角坐标系xOy中有不重合的两个点与.若Q、P为某个直角三角形的两个锐角顶点,当该直角三角形的两条直角边分别与x轴或y轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q与点P之间的“直距”记做,特别地,当PQ与某条坐标轴平行(或重合)时,线段PQ的长即为点Q与点P之间的“直距”.例如下图中,点,点,此时点Q与点P之间的“直距”.
(1)①已知O为坐标原点,点,,则_________,_________;
②点C在直线上,求出的最小值;
(2)点E是以原点O为圆心,1为半径的圆上的一个动点,点F是直线上一动点.直接写出点E与点F之间“直距”的最小值.
22.(8分)如图所示,点P位于等边的内部,且∠ACP=∠CBP.
(1)∠BPC的度数为________°;
(2)延长BP至点D,使得PD=PC,连接AD,CD.
①依题意,补全图形;
②证明:AD+CD=BD;
(3)在(2)的条件下,若BD的长为2,求四边形ABCD的面积.
23.(8分)解下列不等式组:
24.(10分)如图,已知ABCD是边长为3的正方形,点P在线段BC上,点G在线段AD上,PD=PG,DF⊥PG于点H,交AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连接EF.
(1)求证:DF=PG;
(2)若PC=1,求四边形PEFD的面积.
25.(10分)如图,是菱形的对角线,,(1)请用尺规作图法,作的垂直平分线,垂足为,交于;(不要求写作法,保留作图痕迹)在(1)条件下,连接,求的度数.
26.(12分)某校为了解本校九年级男生体育测试中跳绳成绩的情况,随机抽取该校九年级若干名男生,调查他们的跳绳成绩(次/分),按成绩分成,,,,五个等级.将所得数据绘制成如下统计图.根据图中信息,解答下列问题:
该校被抽取的男生跳绳成绩频数分布直方图
(1)本次调查中,男生的跳绳成绩的中位数在________等级;
(2)若该校九年级共有男生400人,估计该校九年级男生跳绳成绩是等级的人数.
27.(12分)如图,已知一次函数的图象与反比例函数的图象交于点,与轴、轴交于两点,过作垂直于轴于点.已知.
(1)求一次函数和反比例函数的表达式;
(2)观察图象:当时,比较.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
设I的边长为x,根据“I、II的面积之和等于III、IV面积之和的2倍”列出方程并解方程即可.
【详解】
设I的边长为x
根据题意有
解得或(舍去)
故选:C.
【点睛】
本题主要考查一元二次方程的应用,能够根据题意列出方程是解题的关键.
2、D
【解析】
∵函数的图象过点A(1,m),B(4,n),
∴m==,n==3,
∴A(1,),B(4,3),
过A作AC∥x轴,交B′B的延长线于点C,则C(4,),
∴AC=4﹣1=3,
∵曲线段AB扫过的面积为9(图中的阴影部分),
∴AC•AA′=3AA′=9,
∴AA′=3,即将函数的图象沿y轴向上平移3个单位长度得到一条新函数的图象,
∴新图象的函数表达式是.
故选D.
3、C
【解析】分析:减去一个数,等于加上这个数的相反数. 依此计算即可求解.
详解:(-5)-(-3)=-1.
故选:C.
点睛:考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号; ②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数).
4、C
【解析】
试题解析:∵∠AEB=90°,AE=6,BE=8,
∴AB=
∴S阴影部分=S正方形ABCD-SRt△ABE=102-
=100-24
=76.
故选C.
考点:勾股定理.
5、D
【解析】
分析:观察图形可知,阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC,然后根据扇形面积公式和三角形面积公式计算即可.
详解:连接CD.
∵∠C=90°,AC=2,AB=4,
∴BC==2.
∴阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC
=
=
.
故选:D.
点睛:本题考查了勾股定理,圆的面积公式,三角形的面积公式及割补法求图形的面积,根据图形判断出阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC是解答本题的关键.
6、C
【解析】
在△ABC中,∠ACB=90°,∠A=24°,
∴∠B=90°-∠A=66°.
由折叠的性质可得:∠BCD=∠ACB=45°,
∴∠BDC=180°-∠BCD-∠B=69°.
故选C.
7、D
【解析】
由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
①∵抛物线对称轴是y轴的右侧,
∴ab<0,
∵与y轴交于负半轴,
∴c<0,
∴abc>0,
故①正确;
②∵a>0,x=﹣<1,
∴﹣b<2a,
∴2a+b>0,
故②正确;
③∵抛物线与x轴有两个交点,
∴b2﹣4ac>0,
故③正确;
④当x=﹣1时,y>0,
∴a﹣b+c>0,
故④正确.
故选D.
【点睛】
本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.
8、C
【解析】
严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.
【详解】
根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.
故选C.
【点睛】
本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
9、B
【解析】
根据图形确定出图1与图2中阴影部分的面积,由此即可解答.
【详解】
∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;
∴(a﹣b)2=a2﹣2ab+b2,
故选B.
【点睛】
本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.
10、C
【解析】
解:A.掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;
B.掷一枚硬币,出现正面朝上的概率为,故此选项错误;
C.从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:≈0.33;故此选项正确;
D.任意写出一个整数,能被2整除的概率为,故此选项错误.
故选C.
11、B
【解析】
根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可.
【详解】
解:主视图,如图所示:
.
故选B.
【点睛】
本题考查由三视图判断几何体;简单组合体的三视图.用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.
12、C
【解析】
分别根据二次根式的定义,乘方的意义,负指数幂的意义以及绝对值的定义解答即可.
【详解】
=3,故选项A不合题意;
﹣32=﹣9,故选项B不合题意;
(﹣3)﹣2=,故选项C符合题意;
﹣3+|﹣3|=﹣3+3=0,故选项D不合题意.
故选C.
【点睛】
本题主要考查了二次根式的定义,乘方的定义、负指数幂的意义以及绝对值的定义,熟记定义是解答本题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、2或﹣1
【解析】
解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣1.故答案为2或﹣1.
点睛:本题考查数轴,涉及有理数的加减运算、分类讨论的思想.
14、3
【解析】
把x与y的值代入方程组求出m与n的值,即可确定出所求.
【详解】
解:把代入方程组得:
相加得:m+3n=27,
则27的立方根为3,
故答案为3
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值.
15、20
【解析】
由正n边形的中心角为18°,可得方程18n=360,解方程即可求得答案.
【详解】
∵正n边形的中心角为18°,
∴18n=360,
∴n=20.
故答案为20.
【点睛】
本题考查的知识点是正多边形和圆,解题的关键是熟练的掌握正多边形和圆.
16、1
【解析】
试题解析:∵总人数为14÷28%=50(人),
∴该年级足球测试成绩为D等的人数为(人).
故答案为:1.
17、
【解析】
原式提取公因式,再利用完全平方公式分解即可.
【详解】
原式=2x(y2+2y+1)=2x(y+1)2,
故答案为2x(y+1)2
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
18、2
【解析】
试题分析:分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是12,右上是1.
解:分析可得图中阴影部分的两个数分别是左下是12,右上是1,
则m=12×1﹣10=2.
故答案为2.
考点:规律型:数字的变化类.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、不会有触礁的危险,理由见解析.
【解析】
分析:作AH⊥BC,由∠CAH=45°,可设AH=CH=x,根据可得关于x的方程,解之可得.
详解:过点A作AH⊥BC,垂足为点H.
由题意,得∠BAH=60°,∠CAH=45°,BC=1.
设AH=x,则CH=x.
在Rt△ABH中,∵,
解得:.
∵13.65>11,∴货轮继续向正东方向航行,不会有触礁的危险.
点睛:本题考查了解直角三角形的应用﹣方向角问题,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
20、 (1)2,2;(2)2,理由见解析;(3)2.
【解析】
(1)作P5H5垂直于x轴,垂足为H5,把四边形P1P2P3P2和四边形P2P3P2P5的转化为SP1P2P3P2=S△OP1H1﹣S△OP3H3﹣S梯形P2H2H3P3﹣S梯形P1H1H2P2和SP2P3P2P5=S梯形P5H5H2P2﹣S△P5H5O﹣S△OH3P3﹣S梯形P2H2H3P3来求解;
(2)(3)由图可知,Pn﹣1、Pn、Pn+1、Pn+2的横坐标为n﹣5,n﹣2,n﹣3,n﹣2,代入二次函数解析式,
可得Pn﹣1、Pn、Pn+1、Pn+2的纵坐标为(n﹣5)2,(n﹣2)2,(n﹣3)2,(n﹣2)2,将四边形面积转化为S四边形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2来解答.
【详解】
(1)作P5H5垂直于x轴,垂足为H5,
由图可知SP1P2P3P2=S△OP1H1﹣S△OP3H3﹣S梯形P2H2H3P3﹣S梯形P1H1H2P2==2,
SP2P3P2P5=S梯形P5H5H2P2﹣S△P5H5O﹣S△OH3P3﹣S梯形P2H2H3P3==2;
(2)作Pn﹣1Hn﹣1、PnHn、Pn+1Hn+1、Pn+2Hn+2垂直于x轴,垂足为Hn﹣1、Hn、Hn+1、Hn+2,
由图可知Pn﹣1、Pn、Pn+1、Pn+2的横坐标为n﹣5,n﹣2,n﹣3,n﹣2,
代入二次函数解析式,可得Pn﹣1、Pn、Pn+1、Pn+2的纵坐标为(n﹣5)2,(n﹣2)2,(n﹣3)2,(n﹣2)2,
四边形Pn﹣1PnPn+1Pn+2的面积为S四边形Pn﹣1PnPn+1Pn+2
=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2
==2;
(3)S四边形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2
=-=2.
【点睛】
本题是一道二次函数的综合题,考查了根据函数坐标特点求图形面积的知识,解答时要注意,前一小题为后面的题提供思路,由于计算量极大,要仔细计算,以免出错,
21、(1)①3,1;②最小值为3;(1)
【解析】
(1)①根据点Q与点P之间的“直距”的定义计算即可;
②如图3中,由题意,当DCO为定值时,点C的轨迹是以点O为中心的正方形(如左边图),当DCO=3时,该正方形的一边与直线y=-x+3重合(如右边图),此时DCO定值最小,最小值为3;
(1)如图4中,平移直线y=1x+4,当平移后的直线与⊙O在左边相切时,设切点为E,作EF∥x轴交直线y=1x+4于F,此时DEF定值最小;
【详解】
解:(1)①如图1中,
观察图象可知DAO=1+1=3,DBO=1,
故答案为3,1.
②(i)当点C在第一象限时(),根据题意可知,为定值,设点C坐标为,则,即此时为3;
(ii)当点C在坐标轴上时(,),易得为3;
(ⅲ)当点C在第二象限时(),可得;
(ⅳ)当点C在第四象限时(),可得;
综上所述,当时,取得最小值为3;
(1)如解图②,可知点F有两种情形,即过点E分别作y轴、x轴的垂线与直线分别交于、;如解图③,平移直线使平移后的直线与相切,平移后的直线与x轴交于点G,设直线与x轴交于点M,与y轴交于点N,观察图象,此时即为点E与点F之间“直距”的最小值.连接OE,易证,∴,在中由勾股定理得,∴,解得,∴.
【点睛】
本题考查一次函数的综合题,点Q与点P之间的“直距”的定义,圆的有关知识,正方形的性质等知识,解题的关键是理解题意,学会利用新的定义,解决问题,属于中考压轴题.
失分原因
第(1)问 (1)不能根据定义找出AO、BO的“直距”分属哪种情形;
(1)不能找出点C在不同位置时, 的取值情况,并找到 的最小值第(1)问 (1)不能根据定义正确找出点E与点F之间“直距” 取最小值时点E、F 的位置;
(1)不能想到由相似求出GO的值
22、(1)120°;(2)①作图见解析;②证明见解析;(3) .
【解析】
【分析】(1)根据等边三角形的性质,可知∠ACB=60°,在△BCP中,利用三角形内角和定理即可得;
(2)①根据题意补全图形即可;
②证明,根据全等三角形的对应边相等可得,从而可得;
(3)如图2,作于点,延长线于点,根据已知可推导得出,由(2)得,,根据 即可求得.
【详解】(1)∵三角形ABC是等边三角形,
∴∠ACB=60°,即∠ACP+∠BCP=60°,
∵∠BCP+∠CBP+∠BPC=180°,∠ACP=∠CBP,
∴∠BPC=120°,
故答案为120;
(2)①∵如图1所示.
②在等边中,,
∴,
∵,
∴,
∴,
∴,
∵,
∴为等边三角形,
∵,
∴
在和中,
,
∴ ,
∴,
∴;
(3)如图2,作于点,延长线于点,
∵,
∴,
∴,
∴,
又由(2)得,,
.
【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质等,熟练掌握相关性质定理、正确添加辅助线是解题的关键.
23、﹣2≤x<.
【解析】
先分别求出两个不等式的解集,再求其公共解.
【详解】
,
解不等式①得,x<,
解不等式②得,x≥﹣2,
则不等式组的解集是﹣2≤x<.
【点睛】
本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
24、(1)证明见解析;(2)1.
【解析】
作PM⊥AD,在四边形ABCD和四边形ABPM证AD=PM;DF⊥PG,得出∠GDH+∠DGH=90°,推出∠ADF=∠MPG;还有两个直角即可证明△ADF≌△MPG,从而得出对应边相等
(2)由已知得,DG=2PC=2;△ADF≌△MPG得出DF=PD;根据旋转,得出∠EPG=90°,PE=PG从而得出四边形PEFD为平行四边形;根据勾股定理和等量代换求出边长DF的值;根据相似三角形得出对应边成比例求出GH的值,从而求出高PH 的值;最后根据面积公式得出
【详解】
解:(1)证明:∵四边形ABCD为正方形,
∴AD=AB,
∵四边形ABPM为矩形,
∴AB=PM,
∴AD=PM,
∵DF⊥PG,
∴∠DHG=90°,
∴∠GDH+∠DGH=90°,
∵∠MGP+∠MPG=90°,
∴∠GDH=∠MPG,
在△ADF和△MPG中,
∴△ADF≌△MPG(ASA),
∴DF=PG;
(2)作PM⊥DG于M,如图,
∵PD=PG,
∴MG=MD,
∵四边形ABCD为矩形,
∴PCDM为矩形,
∴PC=MD,
∴DG=2PC=2;
∵△ADF≌△MPG(ASA),
∴DF=PG,
而PD=PG,
∴DF=PD,
∵线段PG绕点P逆时针旋转90°得到线段PE,
∴∠EPG=90°,PE=PG,
∴PE=PD=DF,
而DF⊥PG,
∴DF∥PE,
即DF∥PE,且DF=PE,
∴四边形PEFD为平行四边形,
在Rt△PCD中,PC=1,CD=3,
∴PD==,
∴DF=PG=PD=,
∵四边形CDMP是矩形,
∴PM=CD=3,MD=PC=1,
∵PD=PG,PM⊥AD,
∴MG=MD=1,DG=2,
∵∠GDH=∠MPG,∠DHG=∠PMG=90°,
∴△DHG∽△PMG,
∴,
∴GH==,
∴PH=PG﹣GH=﹣=,
∴四边形PEFD的面积=DF•PH=×=1.
【点睛】
本题考查了平行四边形的面积、勾股定理、相似三角形判定、全等三角形性质,本题的关键是求边长和高的值
25、(1)答案见解析;(2)45°.
【解析】
(1)分别以A、B为圆心,大于长为半径画弧,过两弧的交点作直线即可;
(2)根据∠DBF=∠ABD﹣∠ABF计算即可;
【详解】
(1)如图所示,直线EF即为所求;
(2)∵四边形ABCD是菱形,
∴∠ABD=∠DBC∠ABC=75°,DC∥AB,∠A=∠C,
∴∠ABC=150°,∠ABC+∠C=180°,
∴∠C=∠A=30°.
∵EF垂直平分线段AB,
∴AF=FB,
∴∠A=∠FBA=30°,
∴∠DBF=∠ABD﹣∠FBE=45°.
【点睛】
本题考查了线段的垂直平分线作法和性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题.
26、(1)C;(2)100
【解析】
(1)根据中位数的定义即可作出判断;
(2)先算出样本中C等级的百分比,再用总数乘以400即可.
【详解】
解:(1)由直方图中可知数据总数为40个,第20,21个数据的平均数为本组数据的中位数,第20,21个数据的等级都是C等级,故本次调查中,男生的跳绳成绩的中位数在C等级;
故答案为C.
(2)400 =100(人)
答:估计该校九年级男生跳绳成绩是等级的人数有100人.
【点睛】
本题考查了中位数的求法和用样本数估计总体数据,理解相关知识是解题的关键.
27、(1);(2)
【解析】
(1)由一次函数的解析式可得出D点坐标,从而得出OD长度,再由△ODC与△BAC相似及AB与BC的长度得出C、B、A的坐标,进而算出一次函数与反比例函数的解析式;
(2)以A点为分界点,直接观察函数图象的高低即可知道答案.
【详解】
解:(1)对于一次函数y=kx-2,令x=0,则y=-2,即D(0,-2),
∴OD=2,
∵AB⊥x轴于B,
∴ ,
∵AB=1,BC=2,
∴OC=4,OB=6,
∴C(4,0),A(6,1)
将C点坐标代入y=kx-2得4k-2=0,
∴k=,
∴一次函数解析式为y=x-2;
将A点坐标代入反比例函数解析式得m=6,
∴反比例函数解析式为y=;
(2)由函数图象可知:
当0<x<6时,y1<y2;
当x=6时,y1=y2;
当x>6时,y1>y2;
【点睛】
本题考查了反比例函数与一次函数的交点问题.熟悉函数图象上点的坐标特征和待定系数法解函数解析式的方法是解答本题的关键,同时注意对数形结合思想的认识和掌握.
铜陵市2021-2022学年中考数学猜题卷含解析: 这是一份铜陵市2021-2022学年中考数学猜题卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,如图图形中是中心对称图形的是,sin60°的值为等内容,欢迎下载使用。
江西省南昌市重点中学2021-2022学年中考猜题数学试卷含解析: 这是一份江西省南昌市重点中学2021-2022学年中考猜题数学试卷含解析,共22页。试卷主要包含了下列计算正确的是,下列运算正确的是等内容,欢迎下载使用。
甘肃省天水市重点中学2021-2022学年中考猜题数学试卷含解析: 这是一份甘肃省天水市重点中学2021-2022学年中考猜题数学试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,估计5﹣的值应在等内容,欢迎下载使用。