搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年云南省红河州开远市重点中学中考数学考前最后一卷含解析

    2021-2022学年云南省红河州开远市重点中学中考数学考前最后一卷含解析第1页
    2021-2022学年云南省红河州开远市重点中学中考数学考前最后一卷含解析第2页
    2021-2022学年云南省红河州开远市重点中学中考数学考前最后一卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年云南省红河州开远市重点中学中考数学考前最后一卷含解析

    展开

    这是一份2021-2022学年云南省红河州开远市重点中学中考数学考前最后一卷含解析,共21页。试卷主要包含了下列运算结果正确的是,计算等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.估计﹣2的值应该在(  )
    A.﹣1﹣0之间 B.0﹣1之间 C.1﹣2之间 D.2﹣3之间
    2.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为(  )
    A.3 B. C. D.
    3.若正多边形的一个内角是150°,则该正多边形的边数是( )
    A.6 B.12 C.16 D.18
    4.下列图案中,是轴对称图形但不是中心对称图形的是(  )
    A. B. C. D.
    5.下列运算结果正确的是(  )
    A.3a﹣a=2 B.(a﹣b)2=a2﹣b2
    C.a(a+b)=a2+b D.6ab2÷2ab=3b
    6.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是(  )
    A.1,2,3 B.1,1, C.1,1, D.1,2,
    7.计算(﹣5)﹣(﹣3)的结果等于(  )
    A.﹣8 B.8 C.﹣2 D.2
    8.在一个直角三角形中,有一个锐角等于45°,则另一个锐角的度数是(  )
    A.75° B.60° C.45° D.30°
    9.如图,△ABC中,DE∥BC,,AE=2cm,则AC的长是(  )

    A.2cm B.4cm C.6cm D.8cm
    10.下图是某几何体的三视图,则这个几何体是( )

    A.棱柱 B.圆柱 C.棱锥 D.圆锥
    11.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是( )

    A. B. C. D.
    12.计算(—2)2-3的值是( )
    A、1 B、2 C、—1 D、—2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.函数的定义域是__________.
    14.在实数﹣2、0、﹣1、2、中,最小的是_______.
    15.如图,在平面直角坐标系中,点A是抛物线与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为 .
    16.已知且,则=__________.
    17.计算2x3·x2的结果是_______.
    18.如图,在平面直角坐标系中,反比例函数y= (x>0)的图象交矩形OABC的边AB于点D,交BC于点E,且BE=2EC,若四边形ODBE的面积为8,则k=_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)在△ABC中,∠ACB=45°.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
    (1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.
    (2)如果AB≠AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?
    (3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=4,BC=3,CD=x,求线段CP的长.(用含x的式子表示)

    20.(6分)已知,如图直线l1的解析式为y=x+1,直线l2的解析式为y=ax+b(a≠0);这两个图象交于y轴上一点C,直线l2与x轴的交点B(2,0)
    (1)求a、b的值;
    (2)过动点Q(n,0)且垂直于x轴的直线与l1、l2分别交于点M、N都位于x轴上方时,求n的取值范围;
    (3)动点P从点B出发沿x轴以每秒1个单位长的速度向左移动,设移动时间为t秒,当△PAC为等腰三角形时,直接写出t的值.

    21.(6分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?

    22.(8分)如图,抛物线y=﹣x2+5x+n经过点A(1,0),与y轴交于点B.
    (1)求抛物线的解析式;
    (2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.

    23.(8分)对于平面直角坐标系xOy中的任意两点M,N,给出如下定义:点M与点N的“折线距离”为:.

    例如:若点M(-1,1),点N(2,-2),则点M与点N的“折线距离”为:.根据以上定义,解决下列问题:已知点P(3,-2).
    ①若点A(-2,-1),则d(P,A)= ;
    ②若点B(b,2),且d(P,B)=5,则b= ;
    ③已知点C(m,n)是直线上的一个动点,且d(P,C)0)的图象上,
    ∴△OAD的面积=△OCE的面积,
    ∴△OBD的面积=△OBE的面积=四边形ODBE的面积=1,
    ∵BE=2EC,
    ∴△OCE的面积=△OBE的面积=2,
    ∴k=1.

    故答案为:1.
    【点睛】
    本题考查了反比例函数的系数k的几何意义:在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是 |k|,且保持不变.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)CF与BD位置关系是垂直,理由见解析;(2)AB≠AC时,CF⊥BD的结论成立,理由见解析;(3)见解析
    【解析】
    (1)由∠ACB=15°,AB=AC,得∠ABD=∠ACB=15°;可得∠BAC=90°,由正方形ADEF,可得∠DAF=90°,AD=AF,∠DAF=∠DAC+∠CAF;∠BAC=∠BAD+∠DAC;得∠CAF=∠BAD.可证△DAB≌△FAC(SAS),得∠ACF=∠ABD=15°,得∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
    (2)过点A作AG⊥AC交BC于点G,可得出AC=AG,易证:△GAD≌△CAF,所以∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
    (3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=1 ,BC=3,CD=x,求线段CP的长.考虑点D的位置,分两种情况去解答.①点D在线段BC上运动,已知∠BCA=15°,可求出AQ=CQ=1.即DQ=1-x,易证△AQD∽△DCP,再根据相似三角形的性质求解问题.②点D在线段BC延长线上运动时,由∠BCA=15°,可求出AQ=CQ=1,则DQ=1+x.过A作AQ⊥BC交CB延长线于点Q,则△AGD∽△ACF,得CF⊥BD,由△AQD∽△DCP,得再根据相似三角形的性质求解问题.
    【详解】
    (1)CF与BD位置关系是垂直;
    证明如下:
    ∵AB=AC,∠ACB=15°,
    ∴∠ABC=15°.
    由正方形ADEF得AD=AF,
    ∵∠DAF=∠BAC=90°,
    ∴∠DAB=∠FAC,
    ∴△DAB≌△FAC(SAS),
    ∴∠ACF=∠ABD.
    ∴∠BCF=∠ACB+∠ACF=90°.
    即CF⊥BD.
    (2)AB≠AC时,CF⊥BD的结论成立.
    理由是:
    过点A作GA⊥AC交BC于点G,
    ∵∠ACB=15°,
    ∴∠AGD=15°,
    ∴AC=AG,
    同理可证:△GAD≌△CAF
    ∴∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°,
    即CF⊥BD.
    (3)过点A作AQ⊥BC交CB的延长线于点Q,
    ①点D在线段BC上运动时,
    ∵∠BCA=15°,可求出AQ=CQ=1.
    ∴DQ=1﹣x,△AQD∽△DCP,
    ∴,
    ∴,
    ∴.
    ②点D在线段BC延长线上运动时,
    ∵∠BCA=15°,
    ∴AQ=CQ=1,
    ∴DQ=1+x.
    过A作AQ⊥BC,
    ∴∠Q=∠FAD=90°,
    ∵∠C′AF=∠C′CD=90°,∠AC′F=∠CC′D,
    ∴∠ADQ=∠AFC′,
    则△AQD∽△AC′F.
    ∴CF⊥BD,
    ∴△AQD∽△DCP,
    ∴,
    ∴,
    ∴.


    【点睛】
    综合性题型,解题关键是灵活运用所学全等、相似、正方形等知识点.
    20、(1)a=﹣;(2)﹣1<n<2;(3)满足条件的时间t为1s,2s,或(3+)或(3﹣)s.
    【解析】
    试题分析:(1)、根据题意求出点C的坐标,然后将点C和点B的坐标代入直线解析式求出a和b的值;(2)、根据题意可知点Q在点A和点B之间,从而求出n的取值范围;(3)、本题需要分几种情况分别来进行计算,即AC=P1C,P2A=P2C和AP3=AC三种情况分别进行计算得出t的值.
    试题解析:(1)、解:∵点C是直线l1:y=x+1与轴的交点, ∴C(0,1),
    ∵点C在直线l2上, ∴b=1, ∴直线l2的解析式为y=ax+1, ∵点B在直线l2上,
    ∴2a+1=0, ∴a=﹣;
    (2)、解:由(1)知,l1的解析式为y=x+1,令y=0, ∴x=﹣1,
    由图象知,点Q在点A,B之间, ∴﹣1<n<2
    (3)、解:如图,

    ∵△PAC是等腰三角形, ∴①点x轴正半轴上时,当AC=P1C时,
    ∵CO⊥x轴, ∴OP1=OA=1, ∴BP1=OB﹣OP1=2﹣1=1, ∴1÷1=1s,
    ②当P2A=P2C时,易知点P2与O重合, ∴BP2=OB=2, ∴2÷1=2s,
    ③点P在x轴负半轴时,AP3=AC, ∵A(﹣1,0),C(0,1), ∴AC=, ∴AP3=,
    ∴BP3=OB+OA+AP3=3+或BP3=OB+OA﹣AP3=3﹣,
    ∴(3+)÷1=(3+)s,或(3﹣)÷1=(3﹣ )s,
    即:满足条件的时间t为1s,2s,或(3+)或(3﹣)s.
    点睛:本题主要考查的就是一次函数的性质、等腰三角形的性质和动点问题,解决这个问题的关键就是要能够根据题意进行分类讨论,从而得出答案.在解决一次函数和等腰三角形问题时,我们一定要根据等腰三角形的性质来进行分类讨论,可以利用圆规来作出图形,然后根据实际题目来求出答案.
    21、10,1.
    【解析】
    试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.
    试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的 一边的长为m,由题意得化简,得,解得:
    当时,(舍去),
    当时,,
    答:所围矩形猪舍的长为10m、宽为1m.
    考点:一元二次方程的应用题.
    22、(1);(2)(0,)或(0,4).
    【解析】
    试题分析:(1)将A点的坐标代入抛物线中,即可得出二次函数的解析式;
    (2)本题要分两种情况进行讨论:①PB=AB,先根据抛物线的解析式求出B点的坐标,即可得出OB的长,进而可求出AB的长,也就知道了PB的长,由此可求出P点的坐标;
    ②PA=AB,此时P与B关于x轴对称,由此可求出P点的坐标.
    试题解析:(1)∵抛物线经过点A(1,0),∴,∴;
    (2)∵抛物线的解析式为,∴令,则,∴B点坐标(0,﹣4),AB=,
    ①当PB=AB时,PB=AB=,∴OP=PB﹣OB=.∴P(0,),
    ②当PA=AB时,P、B关于x轴对称,∴P(0,4),因此P点的坐标为(0,)或(0,4).
    考点:二次函数综合题.
    23、(1)① 6,② 2或4,③ 1<m<4;(2)或.
    【解析】
    (1)①根据“折线距离”的定义直接列式计算;
    ②根据“折线距离”的定义列出方程,求解即可;
    ③根据“折线距离”的定义列出式子,可知其几何意义是数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3.
    (2)由题意可知,根据图像易得t的取值范围.
    【详解】
    解:(1) ①


    ∴ b=2或4
    ③ ,
    即数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3,所以1<m<4
    (2)设E(x,y),则,
    如图,若点E在⊙F上,则.

    【点睛】
    本题主要考查坐标与图形,正确理解新定义及其几何意义,利用数形结合的思想思考问题是解题关键.
    24、(1)2;(2)不同意他的看法,理由详见解析;(3)c=1.
    【解析】
    (1)把y=x2﹣2x+3配成顶点式得到抛物线上的点到x轴的最短距离,然后根据题意解决问题;
    (2)如图,P点为抛物线y=x2﹣2x+3任意一点,作PQ∥y轴交直线y=x﹣1于Q,设P(t,t2﹣2t+3),则Q(t,t﹣1),则PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函数的性质得到抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”,然后对他的看法进行判断;
    (3)M点为抛物线y=x2﹣2x+3任意一点,作MN∥y轴交抛物线于N,设M(t,t2﹣2t+3),则N(t,t2+c),与(2)方法一样得到MN的最小值为﹣c,从而得到抛物线y=x2﹣2x+3与抛物线的“亲近距离”,所以,然后解方程即可.
    【详解】
    (1)∵y=x2﹣2x+3=(x﹣1)2+2,
    ∴抛物线上的点到x轴的最短距离为2,
    ∴抛物线y=x2﹣2x+3与x轴的“亲近距离”为:2;
    (2)不同意他的看法.理由如下:
    如图,P点为抛物线y=x2﹣2x+3任意一点,作PQ∥y轴交直线y=x﹣1于Q,

    设P(t,t2﹣2t+3),则Q(t,t﹣1),
    ∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,
    当t=时,PQ有最小值,最小值为,
    ∴抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”为,
    而过抛物线的顶点向x轴作垂线与直线相交,抛物线顶点与交点之间的距离为2,
    ∴不同意他的看法;
    (3)M点为抛物线y=x2﹣2x+3任意一点,作MN∥y轴交抛物线于N,

    设M(t,t2﹣2t+3),则N(t,t2+c),
    ∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,
    当t=时,MN有最小值,最小值为﹣c,
    ∴抛物线y=x2﹣2x+3与抛物线的“亲近距离”为﹣c,
    ∴,
    ∴c=1.
    【点睛】
    本题是二次函数的综合题,考查了二次函数图象上点的坐标特征和二次函数的性质,正确理解新定义是解题的关键.
    25、(1)50;(2)详见解析;(3)36°;(4)全校2000名学生共捐6280册书.
    【解析】
    (1)根据捐2本的人数是15人,占30%,即可求出该班学生人数;
    (2)根据条形统计图求出捐4本的人数为,再画出图形即可;
    (3)用360°乘以所捐图书是6本的人数所占比例可得;
    (4)先求出九(1)班所捐图书的平均数,再乘以全校总人数2000即可.
    【详解】
    (1)∵捐 2 本的人数是 15 人,占 30%,
    ∴该班学生人数为 15÷30%=50 人;
    (2)根据条形统计图可得:捐 4 本的人数为:50﹣(10+15+7+5)=13;
    补图如下;

    (3)九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆
    心角为 360°×=36°.
    (4)∵九(1)班所捐图书的平均数是;(1×10+2×15+4×13+5×7+6×5)÷50=,
    ∴全校 2000 名学生共捐 2000×=6280(本),
    答:全校 2000 名学生共捐 6280 册书.
    【点睛】
    本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,用到的知识点是众数、中位数、平均数.
    26、(1)0,1,4,5,0,0;(2)14,84.5,1;(3)甲,理由见解析
    【解析】
    (1)根据折线统计图数字进行填表即可;
    (2)根据稽查,中位数,众数的计算方法,求得甲成绩的极差,中位数,乙成绩的极差,众数即可;
    (3)可分别从平均数、方差、极差三方面进行比较.
    【详解】
    (1)由图可知:甲的成绩为:75,84,89,82,86,1,86,83,85,86,
    ∴70⩽x⩽74无,共0个;
    75⩽x⩽79之间有75,共1个;
    80⩽x⩽84之间有84,82,1,83,共4个;
    85⩽x⩽89之间有89,86,86,85,86,共5个;
    90⩽x⩽94之间和95⩽x⩽100无,共0个.
    故答案为0;1;4;5;0;0;
    (2)由图可知:甲的最高分为89分,最低分为75分,极差为89−75=14分;
    ∵甲的成绩为从低到高排列为:75,1,82,83,84,85,86,86,86,89,
    ∴中位数为(84+85)=84.5;
    ∵乙的成绩为从低到高排列为:72,76,1,1,1,83,87,89,91,96,
    1出现3次,乙成绩的众数为1.
    故答案为14;84.5;1;
    (3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小.
    或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论)
    故答案为:甲,两人的平均数相同且甲的方差小于乙,说明甲成绩稳定.
    【点睛】
    此题考查折线统计图,统计表,平均数,中位数,众数,方差,极差,解题关键在于掌握运算法则以及会用这些知识来评价这组数据.
    27、(1),补全条形统计图见解析;(2)该校学生对“食品安全知识”非常了解的人数为135人。
    【解析】
    试题分析:
    (1)由统计图中的信息可知,B组学生有32人,占总数的40%,由此可得被抽查学生总人数为:32÷40%=80(人),结合C组学生有28人可得:m%=28÷80×100%=35%,由此可得m=35;由80-32-28-8=12(人)可知A组由12人,由此即可补全条形统计图了;
    (2)由(1)中计算可知,A组有12名学生,占总数的12÷80×100%=15%,结合全校总人数为900可得900×15%=135(人),即全校“非常了解”“食品安全知识”的有135人.
    试题解析:
    (1)由已知条件可得:被抽查学生总数为32÷40%=80(人),
    ∴m%=28÷80×100%=35%,
    ∴m=35,
    A组人数为:80-32-28-8=12(人),
    将图形统计图补充完整如下图所示:

    (2)由题意可得:900×(12÷80×100%)=900×15%=135(人).
    答:全校学生对“食品安全知识”非常了解的人数为135人.

    相关试卷

    2022届云南省红河州市级名校中考数学考前最后一卷含解析:

    这是一份2022届云南省红河州市级名校中考数学考前最后一卷含解析,共20页。试卷主要包含了运用图形变化的方法研究下列问题等内容,欢迎下载使用。

    2021-2022学年云南省腾冲县中考数学考前最后一卷含解析:

    这是一份2021-2022学年云南省腾冲县中考数学考前最后一卷含解析,共20页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2021-2022学年益阳市重点中学中考数学考前最后一卷含解析:

    这是一份2021-2022学年益阳市重点中学中考数学考前最后一卷含解析,共24页。试卷主要包含了若分式有意义,则x的取值范围是,下列运算结果正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map