终身会员
搜索
    上传资料 赚现金
    2021-2022学年浙江省杭州市萧山区城北片达标名校中考数学模拟试题含解析
    立即下载
    加入资料篮
    2021-2022学年浙江省杭州市萧山区城北片达标名校中考数学模拟试题含解析01
    2021-2022学年浙江省杭州市萧山区城北片达标名校中考数学模拟试题含解析02
    2021-2022学年浙江省杭州市萧山区城北片达标名校中考数学模拟试题含解析03
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年浙江省杭州市萧山区城北片达标名校中考数学模拟试题含解析

    展开
    这是一份2021-2022学年浙江省杭州市萧山区城北片达标名校中考数学模拟试题含解析,共30页。试卷主要包含了如图,△OAB∽△OCD,OA,下列算式中,结果等于x6的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②△OAE∽△OPA;③当正方形的边长为3,BP=1时,cos∠DFO=,其中正确结论的个数是( )

    A.0 B.1 C.2 D.3
    2.在下列交通标志中,是中心对称图形的是(  )
    A. B.
    C. D.
    3.如图,若a∥b,∠1=60°,则∠2的度数为(  )

    A.40° B.60° C.120° D.150°
    4.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( )
    A.赚了10元 B.赔了10元 C.赚了50元 D.不赔不赚
    5.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是(  )

    A. B. C. D.
    6.下列几何体中,主视图和左视图都是矩形的是(  )
    A. B. C. D.
    7.如图,已知BD与CE相交于点A,ED∥BC,AB=8,AC=12,AD=6,那么AE的长等于( )

    A.4 B.9 C.12 D.16
    8.下列算式中,结果等于x6的是(  )
    A.x2•x2•x2 B.x2+x2+x2 C.x2•x3 D.x4+x2
    9.已知地球上海洋面积约为361 000 000km2,361 000 000这个数用科学记数法可表示为( )
    A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×109
    10.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B,C).若线段AD长为正整数,则点D的个数共有( )

    A.5个 B.4个 C.3个 D.2个
    11.如图所示,数轴上两点A,B分别表示实数a,b,则下列四个数中最大的一个数是(   )

    A.a     B.b   C. D.
    12.下列计算正确的是(  )
    A.a4+a5=a9 B.(2a2b3)2=4a4b6
    C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在Rt△AOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后,得到△A′O′B,且反比例函数y=的图象恰好经过斜边A′B的中点C,若SABO=4,tan∠BAO=2,则k=_____.

    14.如图,在⊙O中,点B为半径OA上一点,且OA=13,AB=1,若CD是一条过点B的动弦,则弦CD的最小值为_____.

    15.如图,已知正方形边长为4,以A为圆心,AB为半径作弧BD,M是BC的中点,过点M作EM⊥BC交弧BD于点E,则弧BE的长为_____.

    16.计算两个两位数的积,这两个数的十位上的数字相同,个位上的数字之和等于1.
    53×57=3021,38×32=1216,84×86=7224,71×79=2.
    (1)你发现上面每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的 ,请写出一个符合上述规律的算式 .
    (2)设其中一个数的十位数字为a,个位数字为b,请用含a,b的算式表示这个规律.
    17.边长分别为a和2a的两个正方形按如图的样式摆放,则图中阴影部分的面积为_________.

    18.如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点.
    (1)OM的长等于_______;
    (2)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图1,抛物线y=ax2+bx﹣2与x轴交于点A(﹣1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).
    (1)求该抛物线的解析式;
    (2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;
    (3)如图3,连结AC,将△AOC绕点O逆时针方向旋转,记旋转中的三角形为△A′OC′,在旋转过程中,直线OC′与直线BE交于点Q,若△BOQ为等腰三角形,请直接写出点Q的坐标.

    20.(6分)计算:2cos30°+--()-2
    21.(6分)Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE,OD.
    (1)如图①,求∠ODE的大小;
    (2)如图②,连接OC交DE于点F,若OF=CF,求∠A的大小.

    22.(8分)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.
    (1)求抛物线的解析式;
    (2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
    (3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

    23.(8分)如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?

    24.(10分)如图,已知二次函数的图象与轴交于,两点在左侧),与轴交于点,顶点为.

    (1)当时,求四边形的面积;
    (2)在(1)的条件下,在第二象限抛物线对称轴左侧上存在一点,使,求点的坐标;
    (3)如图2,将(1)中抛物线沿直线向斜上方向平移个单位时,点为线段上一动点,轴交新抛物线于点,延长至,且,若的外角平分线交点在新抛物线上,求点坐标.
    25.(10分) (1)如图,四边形为正方形,,那么与相等吗?为什么?
    (2)如图,在中,,,为边的中点,于点,交于,求的值
    (3)如图,中,,为边的中点,于点,交于,若,,求.

    26.(12分)如图,已知CD=CF,∠A=∠E=∠DCF=90°,求证:AD+EF=AE

    27.(12分)如图,已知抛物线与轴交于两点(A点在B点的左边),与轴交于点.
    (1)如图1,若△ABC为直角三角形,求的值;
    (2)如图1,在(1)的条件下,点在抛物线上,点在抛物线的对称轴上,若以为边,以点、、、Q为顶点的四边形是平行四边形,求点的坐标;
    (3)如图2,过点作直线的平行线交抛物线于另一点,交轴于点,若﹕=1﹕1. 求的值.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    由四边形ABCD是正方形,得到AD=BC, 根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据勾股定理求出直接用余弦可求出.
    【详解】
    详解:∵四边形ABCD是正方形,
    ∴AD=BC,
    ∵BP=CQ,
    ∴AP=BQ,
    在△DAP与△ABQ中,
    ∴△DAP≌△ABQ,
    ∴∠P=∠Q,



    ∴AQ⊥DP;
    故①正确;
    ②无法证明,故错误.
    ∵BP=1,AB=3,



    ∴ 故③正确,
    故选C.
    【点睛】
    考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高.
    2、C
    【解析】
    解:A图形不是中心对称图形;
    B不是中心对称图形;
    C是中心对称图形,也是轴对称图形;
    D是轴对称图形;不是中心对称图形
    故选C
    3、C
    【解析】
    如图:

    ∵∠1=60°,
    ∴∠3=∠1=60°,
    又∵a∥b,
    ∴∠2+∠3=180°,
    ∴∠2=120°,
    故选C.
    点睛:本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.平行线的性质定理:两直线平行,同位角相等,内错角相等,同旁内角互补,两条平行线之间的距离处处相等.
    4、A
    【解析】
    试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.
    考点:一元一次方程的应用
    5、D
    【解析】
    A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;
    B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此,所以B选项不成立;
    C选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;
    D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.
    故选D.
    6、C
    【解析】
    主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.
    【详解】
    A. 主视图为圆形,左视图为圆,故选项错误;
    B. 主视图为三角形,左视图为三角形,故选项错误;
    C. 主视图为矩形,左视图为矩形,故选项正确;
    D. 主视图为矩形,左视图为圆形,故选项错误.
    故答案选:C.
    【点睛】
    本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.
    7、B
    【解析】
    由于ED∥BC,可证得△ABC∽△ADE,根据相似三角形所得比例线段,即可求得AE的长.
    【详解】
    ∵ED∥BC,
    ∴△ABC∽△ADE,
    ∴ =,
    ∴ ==,
    即AE=9;
    ∴AE=9.
    故答案选B.
    【点睛】
    本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.
    8、A
    【解析】试题解析:A、x2•x2•x2=x6,故选项A符合题意;
    B、x2+x2+x2=3x2,故选项B不符合题意;
    C、x2•x3=x5,故选项C不符合题意;
    D、x4+x2,无法计算,故选项D不符合题意.
    故选A.
    9、C
    【解析】
    分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.
    解答:解:将361 000 000用科学记数法表示为3.61×1.
    故选C.
    10、C
    【解析】
    试题分析:过A作AE⊥BC于E,∵AB=AC=5,BC=8,∴BE=EC=4,∴AE=3,∵D是线段BC上的动点(不含端点B,C),∴AE≤AD<AB,即3≤AD<5,∵AD为正整数,∴AD=3或AD=4,当AD=4时,E的左右两边各有一个点D满足条件,∴点D的个数共有3个.故选C.

    考点:等腰三角形的性质;勾股定理.
    11、D
    【解析】
    ∵负数小于正数,在(0,1)上的实数的倒数比实数本身大.
    ∴<a<b< ,
    故选D.
    12、B
    【解析】分析:根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算.
    详解:A、a4与a5不是同类项,不能合并,故本选项错误;
    B、(2a2b3)2=4a4b6,故本选项正确;
    C、-2a(a+3)=-2a2-6a,故本选项错误;
    D、(2a-b)2=4a2-4ab+b2,故本选项错误;
    故选:B.
    点睛:本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,
    ∵tan∠BAO=2,
    ∴=2,
    ∵S△ABO=•AO•BO=4,
    ∴AO=2,BO=4,
    ∵△ABO≌△A'O'B,
    ∴AO=A′O′=2,BO=BO′=4,
    ∵点C为斜边A′B的中点,CD⊥BO′,
    ∴CD=A′O′=1,BD=BO′=2,
    ∴x=BO﹣CD=4﹣1=3,y=BD=2,
    ∴k=x·y=3×2=1.
    故答案为1.

    14、10
    【解析】
    连接OC,当CD⊥OA时CD的值最小,然后根据垂径定理和勾股定理求解即可.
    【详解】
    连接OC,当CD⊥OA时CD的值最小,
    ∵OA=13,AB=1,
    ∴OB=13-1=12,
    ∴BC=,
    ∴CD=5×2=10.
    故答案为10.
    【点睛】
    本题考查了垂径定理及勾股定理,垂径定理是:垂直与弦的直径平分这条弦,并且平分这条弦所对的两段弧 .
    15、
    【解析】
    延长ME交AD于F,由M是BC的中点,MF⊥AD,得到F点为AD的中点,即AF=AD,则∠AEF=30°,得到∠BAE=30°,再利用弧长公式计算出弧BE的长.
    【详解】
    延长ME交AD于F,如图,∵M是BC的中点,MF⊥AD,∴F点为AD的中点,即AF=AD.
    又∵AE=AD,∴AE=2AF,∴∠AEF=30°,∴∠BAE=30°,∴弧BE的长==.
    故答案为.

    【点睛】
    本题考查了弧长公式:l=.也考查了在直角三角形中,一直角边是斜边的一半,这条直角边所对的角为30度.
    16、 (1)十位和个位,44×46=2024;(2) 10a(a+1)+b(1﹣b)
    【解析】分析:(1)、根据题意得出其一般性的规律,从而得出答案;(2)、利用代数式表示出其一般规律得出答案.
    详解:(1)由已知等式知,每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的十位和个位,
    例如:44×46=2024,
    (2)(1a+b)(1a+1﹣b)=10a(a+1)+b(1﹣b).
    点睛:本题主要考查的是规律的发现与整理,属于基础题型.找出一般性的规律是解决这个问题的关键.
    17、1a1.
    【解析】
    结合图形,发现:阴影部分的面积=大正方形的面积的+小正方形的面积-直角三角形的面积.
    【详解】
    阴影部分的面积=大正方形的面积+小正方形的面积-直角三角形的面积
    =(1a)1+a1-×1a×3a
    =4a1+a1-3a1
    =1a1.
    故答案为:1a1.
    【点睛】
    此题考查了整式的混合运算,关键是列出求阴影部分面积的式子.
    18、(1)4;(2)见解析;
    【解析】
    解:(1)由勾股定理可得OM的长度
    (2)取格点 F , E, 连接 EF , 得到点 N ,取格点S, T, 连接ST, 得到点R, 连接NR交OM于P,则点P即为所求。
    【详解】
    (1)OM==4;
    故答案为4.
    (2)以点O为原点建立直角坐标系,则A(1,0),B(4,0),设P(a,a),(0≤a≤4),
    ∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,
    ∴PA2+PB2=4(a﹣)2+,
    ∵0≤a≤4,
    ∴当a=时,PA2+PB2 取得最小值,
    综上,需作出点P满足线段OP的长=;
    取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR交OM于P,
    则点P即为所求.
    【点睛】(1) 根据勾股定理即可得到结论;
    (2) 取格点F, E, 连接EF, 得到点N, 取格点S, T,连接ST, 得到点R, 连接NR即可得到结果.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)y=x2﹣x﹣2;(2)9;(3)Q坐标为(﹣)或(4﹣)或(2,1)或(4+,﹣).
    【解析】
    试题分析:把点代入抛物线,求出的值即可.
    先用待定系数法求出直线BE的解析式,进而求得直线AD的解析式,设则表示出,用配方法求出它的最大值,
    联立方程求出点的坐标, 最大值=,
    进而计算四边形EAPD面积的最大值;
    分两种情况进行讨论即可.
    试题解析:(1)∵在抛物线上,

    解得
    ∴抛物线的解析式为
    (2)过点P作轴交AD于点G,


    ∴直线BE的解析式为
    ∵AD∥BE,设直线AD的解析式为 代入,可得
    ∴直线AD的解析式为
    设则

    ∴当x=1时,PG的值最大,最大值为2,
    由 解得 或

    ∴ 最大值=

    ∵AD∥BE,

    ∴S四边形APDE最大=S△ADP最大+
    (3)①如图3﹣1中,当时,作于T.





    可得
    ②如图3﹣2中,当时,
    当时,
    当时,Q3
    综上所述,满足条件点点Q坐标为或或或
    20、5
    【解析】
    根据实数的计算,先把各数化简,再进行合并即可.
    【详解】
    原式=
    =5
    【点睛】
    此题主要考查实数的计算,解题的关键是熟知特殊三角函数的化简与二次根式的运算.
    21、(1)∠ODE=90°;(2)∠A=45°.
    【解析】
    分析:(Ⅰ)连接OE,BD,利用全等三角形的判定和性质解答即可;
    (Ⅱ)利用中位线的判定和定理解答即可.
    详解:(Ⅰ)连接OE,BD.
    ∵AB是⊙O的直径,∴∠ADB=90°,∴∠CDB=90°.
    ∵E点是BC的中点,∴DE=BC=BE.
    ∵OD=OB,OE=OE,∴△ODE≌△OBE,∴∠ODE=∠OBE.
    ∵∠ABC=90°,∴∠ODE=90°;
    (Ⅱ)∵CF=OF,CE=EB,∴FE是△COB的中位线,∴FE∥OB,∴∠AOD=∠ODE,由(Ⅰ)得∠ODE=90°,∴∠AOD=90°.
    ∵OA=OD,∴∠A=∠ADO=.

    点睛:本题考查了圆周角定理,关键是根据学生对全等三角形的判定方法及切线的判定等知识的掌握情况解答.
    22、 (1) 抛物线的解析式为y=x2-2x+1,(2) 四边形AECP的面积的最大值是,点P(,﹣);(3) Q(4,1)或(-3,1).
    【解析】
    (1)把点A,B的坐标代入抛物线的解析式中,求b,c;(2)设P(m,m2−2m+1),根据S四边形AECP=S△AEC+S△APC,把S四边形AECP用含m式子表示,根据二次函数的性质求解;(3)设Q(t,1),分别求出点A,B,C,P的坐标,求出AB,BC,CA;用含t的式子表示出PQ,CQ,判断出∠BAC=∠PCA=45°,则要分两种情况讨论,根据相似三角形的对应边成比例求t.
    【详解】
    解:(1)将A(0,1),B(9,10)代入函数解析式得:
    ×81+9b+c=10,c=1,解得b=−2,c=1,
    所以抛物线的解析式y=x2−2x+1;
    (2)∵AC∥x轴,A(0,1),
    ∴x2−2x+1=1,解得x1=6,x2=0(舍),即C点坐标为(6,1),
    ∵点A(0,1),点B(9,10),
    ∴直线AB的解析式为y=x+1,设P(m,m2−2m+1),∴E(m,m+1),
    ∴PE=m+1−(m2−2m+1)=−m2+3m.
    ∵AC⊥PE,AC=6,
    ∴S四边形AECP=S△AEC+S△APC=AC⋅EF+AC⋅PF
    =AC⋅(EF+PF)=AC⋅EP
    =×6(−m2+3m)=−m2+9m.
    ∵0 ∴当m=时,四边形AECP的面积最大值是,此时P();
    (3)∵y=x2−2x+1=(x−3)2−2,
    P(3,−2),PF=yF−yp=3,CF=xF−xC=3,
    ∴PF=CF,∴∠PCF=45∘,
    同理可得∠EAF=45∘,∴∠PCF=∠EAF,
    ∴在直线AC上存在满足条件的点Q,
    设Q(t,1)且AB=,AC=6,CP=,
    ∵以C,P,Q为顶点的三角形与△ABC相似,
    ①当△CPQ∽△ABC时,
    CQ:AC=CP:AB,(6−t):6=,解得t=4,所以Q(4,1);
    ②当△CQP∽△ABC时,
    CQ:AB=CP:AC,(6−t)6,解得t=−3,所以Q(−3,1).
    综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形与△ABC相似,Q点的坐标为(4,1)或(−3,1).

    【点睛】
    本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,平行于坐标轴的直线上两点间的距离是较大的坐标减较小的坐标;解(3)的关键是利用相似三角形的性质的出关于CQ的比例,要分类讨论,以防遗漏.
    23、20千米
    【解析】
    由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜边相等两次利用勾股定理得到AD2+AE2=BE2+BC2,设AE为x,则BE=10﹣x,将DA=8,CB=2代入关系式即可求得.
    【详解】
    解:设基地E应建在离A站x千米的地方.
    则BE=(50﹣x)千米
    在Rt△ADE中,根据勾股定理得:AD2+AE2=DE2
    ∴302+x2=DE2
    在Rt△CBE中,根据勾股定理得:CB2+BE2=CE2
    ∴202+(50﹣x)2=CE2
    又∵C、D两村到E点的距离相等.
    ∴DE=CE
    ∴DE2=CE2
    ∴302+x2=202+(50﹣x)2
    解得x=20
    ∴基地E应建在离A站20千米的地方.
    考点:勾股定理的应用.
    24、(1)4;(2),;(3).
    【解析】
    (1)过点D作DE⊥x轴于点E,求出二次函数的顶点D的坐标,然后求出A、B、C的坐标,然后根据即可得出结论;
    (2)设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,证出,列表比例式,并找出关于t的方程即可得出结论;
    (3)判断点D在直线上,根据勾股定理求出DH,即可求出平移后的二次函数解析式,设点,,过点作于,于,轴于,根据勾股定理求出AG,联立方程即可求出m、n,从而求出结论.
    【详解】
    解:(1)过点D作DE⊥x轴于点E

    当时,得到,
    顶点,
    ∴DE=1
    由,得,;
    令,得;
    ,,,
    ,OC=3

    (2)如图1,设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,

    由翻折得:,



    轴,,



    由勾股定理得:,





    ,,

    解得:(不符合题意,舍去),;
    ,.
    (3)原抛物线的顶点在直线上,
    直线交轴于点,
    如图2,过点作轴于,

    由题意,平移后的新抛物线顶点为,解析式为,
    设点,,则,,,
    过点作于,于,轴于,




    、分别平分,,

    点在抛物线上,

    根据题意得:
    解得:

    【点睛】
    此题考查的是二次函数的综合大题,难度较大,掌握二次函数平移规律、二次函数的图象及性质、相似三角形的判定及性质和勾股定理是解决此题的关键.
    25、 (1)相等,理由见解析;(2)2;(3).
    【解析】
    (1)先判断出AB=AD,再利用同角的余角相等,判断出∠ABF=∠DAE,进而得出△ABF≌△DAE,即可得出结论;
    (2)构造出正方形,同(1)的方法得出△ABD≌△CBG,进而得出CG=AB,再判断出△AFB∽△CFG,即可得出结论;
    (3)先构造出矩形,同(1)的方法得,∠BAD=∠CBP,进而判断出△ABD∽△BCP,即可求出CP,再同(2)的方法判断出△CFP∽△AFB,建立方程即可得出结论.
    【详解】
    解:(1)BF=AE,理由:
    ∵四边形ABCD是正方形,
    ∴AB=AD,∠BAD=∠D=90°,
    ∴∠BAE+∠DAE=90°,
    ∵AE⊥BF,
    ∴∠BAE+∠ABF=90°,
    ∴∠ABF=∠DAE,
    在△ABF和△DAE中,
    ∴△ABF≌△DAE,
    ∴BF=AE,
    (2) 如图2,
    过点A作AM∥BC,过点C作CM∥AB,两线相交于M,延长BF交CM于G,

    ∴四边形ABCM是平行四边形,
    ∵∠ABC=90°,
    ∴▱ABCM是矩形,
    ∵AB=BC,
    ∴矩形ABCM是正方形,
    ∴AB=BC=CM,
    同(1)的方法得,△ABD≌△BCG,
    ∴CG=BD,
    ∵点D是BC中点,
    ∴BD=BC=CM,
    ∴CG=CM=AB,
    ∵AB∥CM,
    ∴△AFB∽△CFG,

    (3) 如图3,

    在Rt△ABC中,AB=3,BC=4,
    ∴AC=5,
    ∵点D是BC中点,
    ∴BD=BC=2,
    过点A作AN∥BC,过点C作CN∥AB,两线相交于N,延长BF交CN于P,
    ∴四边形ABCN是平行四边形,
    ∵∠ABC=90°,∴▱ABCN是矩形,
    同(1)的方法得,∠BAD=∠CBP,
    ∵∠ABD=∠BCP=90°,
    ∴△ABD∽△BCP,


    ∴CP=
    同(2)的方法,△CFP∽△AFB,


    ∴CF=.
    【点睛】
    本题是四边形综合题,主要考查了正方形的性质和判定,平行四边形的判定,矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,构造出(1)题的图形,是解本题的关键.
    26、证明见解析.
    【解析】
    易证△DAC≌△CEF,即可得证.
    【详解】
    证明:∵∠DCF=∠E=90°,∴∠DCA+∠ECF=90°,∠CFE+∠ECF=90°,
    ∴∠DCA=∠CFE,在△DAC和△CEF中:,
    ∴△DAC≌△CEF(AAS),
    ∴AD=CE,AC=EF,
    ∴AE=AD+EF
    【点睛】
    此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定与性质.
    27、 (1) ;(2) 和;(3)
    【解析】
    (1)设,,再根据根与系数的关系得到,根据勾股定理得到:、 ,根据列出方程,解方程即可;(2)求出A、B坐标,设出点Q坐标,利用平行四边形的性质,分类讨论点P坐标,利用全等的性质得出P点的横坐标后,分别代入抛物线解析式,求出P点坐标;
    (3)过点作DH⊥轴于点,由::,可得::.设,可得 点坐标为,可得.设点坐标为.可证△∽△,利用相似性质列出方程整理可得到 ①,将代入抛物线上,可得②,联立①②解方程组,即可解答.
    【详解】
    解:设,,则是方程的两根,
    ∴.
    ∵已知抛物线与轴交于点.

    在△中:,在△中:,
    ∵△为直角三角形,由题意可知∠°,
    ∴,
    即,
    ∴,
    ∴,
    解得:,
    又,
    ∴.
    由可知:,令则,
    ∴,
    ∴.
    ①以为边,以点、、、Q为顶点的四边形是四边形时,
    设抛物线的对称轴为 ,l与交于点,过点作⊥l,垂足为点,

    即∠°∠.
    ∵四边形为平行四边形,
    ∴∥,又l∥轴,
    ∴∠∠=∠,
    ∴△≌△,
    ∴,
    ∴点的横坐标为,

    即点坐标为.
    ②当以为边,以点、、、Q为顶点的四边形是四边形时,

    设抛物线的对称轴为 ,l与交于点,过点作⊥l,垂足为点,
    即∠°∠.
    ∵四边形为平行四边形,
    ∴∥,又l∥轴,
    ∴∠∠=∠,
    ∴△≌△,
    ∴,
    ∴点的横坐标为,

    即点坐标为
    ∴符合条件的点坐标为和.
    过点作DH⊥轴于点,
    ∵::,
    ∴::.
    设,则点坐标为,
    ∴.
    ∵点在抛物线上,
    ∴点坐标为,
    由(1)知,
    ∴,
    ∵∥,
    ∴△∽△,

    ∴,
    ∴,
    即①,
    又在抛物线上,
    ∴②,
    将②代入①得:,
    解得(舍去),
    把代入②得:.
    【点睛】
    本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.

    相关试卷

    浙江省杭州市萧山区城北片2017届九年级(上)期中数学试卷(含解析): 这是一份浙江省杭州市萧山区城北片2017届九年级(上)期中数学试卷(含解析),共30页。

    浙江省杭州市萧山区一模考试卷达标名校2021-2022学年中考联考数学试题含解析: 这是一份浙江省杭州市萧山区一模考试卷达标名校2021-2022学年中考联考数学试题含解析,共23页。试卷主要包含了答题时请按要求用笔,计算,化简•a5所得的结果是等内容,欢迎下载使用。

    浙江省杭州市萧山区2021-2022学年中考数学模拟精编试卷含解析: 这是一份浙江省杭州市萧山区2021-2022学年中考数学模拟精编试卷含解析,共26页。试卷主要包含了答题时请按要求用笔,下列方程中是一元二次方程的是,不等式组的解在数轴上表示为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map