|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年浙江省临海市中考数学模拟预测题含解析
    立即下载
    加入资料篮
    2021-2022学年浙江省临海市中考数学模拟预测题含解析01
    2021-2022学年浙江省临海市中考数学模拟预测题含解析02
    2021-2022学年浙江省临海市中考数学模拟预测题含解析03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年浙江省临海市中考数学模拟预测题含解析

    展开
    这是一份2021-2022学年浙江省临海市中考数学模拟预测题含解析,共28页。试卷主要包含了的倒数的绝对值是,计算 的结果是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为(  )

    A.6 B.5 C.2 D.3
    2.下列运算正确的是(  )
    A.﹣(a﹣1)=﹣a﹣1 B.(2a3)2=4a6 C.(a﹣b)2=a2﹣b2 D.a3+a2=2a5
    3.已知二次函数(为常数),当自变量的值满足时,与其对应的函数值的最小值为4,则的值为( )
    A.1或5 B.或3 C.或1 D.或5
    4.如图1,在等边△ABC中,D是BC的中点,P为AB 边上的一个动点,设AP=x,图1中线段DP的长为y,若表示y与x的函数关系的图象如图2所示,则△ABC的面积为( )

    A.4 B. C.12 D.
    5.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是(  )

    A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙
    6.如果解关于x的分式方程时出现增根,那么m的值为
    A.-2 B.2 C.4 D.-4
    7.如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为(  )
    A.﹣2 B.0 C.1 D.3
    8.的倒数的绝对值是(  )
    A. B. C. D.
    9.计算 的结果是( )
    A.a2 B.-a2 C.a4 D.-a4
    10.如图,平面直角坐标中,点A(1,2),将AO绕点A逆时针旋转90°,点O的对应点B恰好落在双曲线y=(x>0)上,则k的值为( )

    A.2 B.3 C.4 D.6
    11.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )
    A. B.
    C. D.
    12.下列运算中,正确的是(  )
    A.(ab2)2=a2b4 B.a2+a2=2a4 C.a2•a3=a6 D.a6÷a3=a2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车.如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为_____千米.

    14.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.
    15.如图,在△ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角形EFC=________.

    16.已知a1=,a2=,a3=,a4=,a5=,…,则an=_____.(n为正整数).
    17.某文化用品商店计划同时购进一批A、B两种型号的计算器,若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元.则A型号的计算器的每只进价为_____元.
    18.被历代数学家尊为“算经之首”的九章算术是中国古代算法的扛鼎之作九章算术中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻一雀一燕交而处,衡适平并燕、雀重一斤问燕、雀一枚各重几何?”
    译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻将一只雀、一只燕交换位置而放,重量相等只雀、6只燕重量为1斤问雀、燕毎只各重多少斤?”设每只雀重x斤,每只燕重y斤,可列方程组为______.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)现种植A、B、C三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A种树苗8棵;或植B种树苗6棵,或植C种树苗5棵.经过统计,在整个过程中,每棵树苗的种植成本如图所示.设种植A种树苗的工人为x名,种植B种树苗的工人为y名.求y与x之间的函数关系式;设种植的总成本为w元,
    ①求w与x之间的函数关系式;
    ②若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C种树苗工人的概率.

    20.(6分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
    (1)求证:OP=OQ;
    (2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.

    21.(6分)计算:解方程:
    22.(8分)如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.
    (1)求抛物线的解析式及点C的坐标;
    (2)若点P在第二象限内,过点P作PD⊥轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?
    (3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得△MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
    23.(8分) “大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:

    请根据图中提供的信息,解答下列问题:
    (1)求被调查的学生总人数;
    (2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
    (3)若该校共有800名学生,请估计“最想去景点B“的学生人数.
    24.(10分)如图,AB是⊙O的直径,弧CD⊥AB,垂足为H,P为弧AD上一点,连接PA、PB,PB交CD于E.
    (1)如图(1)连接PC、CB,求证:∠BCP=∠PED;
    (2)如图(2)过点P作⊙O的切线交CD的延长线于点E,过点A向PF引垂线,垂足为G,求证:∠APG=∠F;
    (3)如图(3)在图(2)的条件下,连接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直径AB.

    25.(10分)如图,在Rt△ABC的顶点A、B在x轴上,点C在y轴上正半轴上,且
    A(-1,0),B(4,0),∠ACB=90°.
    (1)求过A、B、C三点的抛物线解析式;
    (2)设抛物线的对称轴l与BC边交于点D,若P是对称轴l上的点,且满足以P、C、D为顶点的三角形与△AOC相似,求P点的坐标;
    (3)在对称轴l和抛物线上是否分别存在点M、N,使得以A、O、M、N为顶点的四边形是平行四边形,若存在请直接写出点M、点N的坐标;若不存在,请说明理由.

    图1 备用图
    26.(12分)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.
    求此抛物线的解析式;求C、D两点坐标及△BCD的面积;若点P在x轴上方的抛物线上,满足S△PCD=S△BCD,求点P的坐标.
    27.(12分) (1)计算:3tan30°+|2﹣|+()﹣1﹣(3﹣π)0﹣(﹣1)2018.
    (2)先化简,再求值:(x﹣)÷,其中x=,y=﹣1.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.
    【详解】
    ∵四边形ABCD是矩形,
    ∴OB=OD,OA=OC,AC=BD,
    ∴OA=OB,
    ∵BE:ED=1:3,
    ∴BE:OB=1:2,
    ∵AE⊥BD,
    ∴AB=OA,
    ∴OA=AB=OB,
    即△OAB是等边三角形,
    ∴∠ABD=60°,
    ∵AE⊥BD,AE=3,
    ∴AB=,
    故选C.
    【点睛】
    此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB是等边三角形是解题关键.
    2、B
    【解析】
    根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解.
    【详解】
    解:A、因为﹣(a﹣1)=﹣a+1,故本选项错误;
    B、(﹣2a3)2=4a6,正确;
    C、因为(a﹣b)2=a2﹣2ab+b2,故本选项错误;
    D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误.
    故选B.
    【点睛】
    本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键.
    3、D
    【解析】
    由解析式可知该函数在时取得最小值0,抛物线开口向上,当时,y随x的增大而增大;当时,y随x的增大而减小;根据时,函数的最小值为4可分如下三种情况:①若,时,y取得最小值4;②若-1<h<3时,当x=h时,y取得最小值为0,不是4;③若,当x=3时,y取得最小值4,分别列出关于h的方程求解即可.
    【详解】
    解:∵当x>h时,y随x的增大而增大,当时,y随x的增大而减小,并且抛物线开口向上,
    ∴①若,当时,y取得最小值4,
    可得:4,
    解得或(舍去);
    ②若-1<h<3时,当x=h时,y取得最小值为0,不是4,
    ∴此种情况不符合题意,舍去;
    ③若-1≤x≤3<h,当x=3时,y取得最小值4,
    可得:,
    解得:h=5或h=1(舍).
    综上所述,h的值为-3或5,
    故选:D.
    【点睛】
    本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.
    4、D
    【解析】
    分析:
    由图1、图2结合题意可知,当DP⊥AB时,DP最短,由此可得DP最短=y最小=,这样如图3,过点P作PD⊥AB于点P,连接AD,结合△ABC是等边三角形和点D是BC边的中点进行分析解答即可.
    详解:
    由题意可知:当DP⊥AB时,DP最短,由此可得DP最短=y最小=,如图3,过点P作PD⊥AB于点P,连接AD,
    ∵△ABC是等边三角形,点D是BC边上的中点,
    ∴∠ABC=60°,AD⊥BC,
    ∵DP⊥AB于点P,此时DP=,
    ∴BD=,
    ∴BC=2BD=4,
    ∴AB=4,
    ∴AD=AB·sin∠B=4×sin60°=,
    ∴S△ABC=AD·BC=.
    故选D.

    点睛:“读懂题意,知道当DP⊥AB于点P时,DP最短=”是解答本题的关键.
    5、B
    【解析】
    分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.
    详解:乙和△ABC全等;理由如下:
    在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,
    所以乙和△ABC全等;
    在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,
    所以丙和△ABC全等;
    不能判定甲与△ABC全等;
    故选B.
    点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
    6、D
    【解析】
    ,去分母,方程两边同时乘以(x﹣1),得:
    m+1x=x﹣1,由分母可知,分式方程的增根可能是1.
    当x=1时,m+4=1﹣1,m=﹣4,
    故选D.
    7、B
    【解析】
    解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.
    【详解】
    由关于y的不等式组,可整理得
    ∵该不等式组解集无解,
    ∴2a+4≥﹣2
    即a≥﹣3
    又∵得x=
    而关于x的分式方程有负数解
    ∴a﹣4<1
    ∴a<4
    于是﹣3≤a<4,且a 为整数
    ∴a=﹣3、﹣2、﹣1、1、1、2、3
    则符合条件的所有整数a的和为1.
    故选B.
    【点睛】
    本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.
    8、D
    【解析】
    直接利用倒数的定义结合绝对值的性质分析得出答案.
    【详解】
    解:−的倒数为−,则−的绝对值是:.
    故答案选:D.
    【点睛】
    本题考查了倒数的定义与绝对值的性质,解题的关键是熟练的掌握倒数的定义与绝对值的性质.
    9、D
    【解析】
    直接利用同底数幂的乘法运算法则计算得出答案.
    【详解】
    解:,
    故选D.
    【点睛】
    此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.
    10、B
    【解析】
    作AC⊥y轴于C,ADx轴,BD⊥y轴,它们相交于D,有A点坐标得到AC=1,OC=1,由于AO绕点A逆时针旋转90°,点O的对应B点,所以相当是把△AOC绕点A逆时针旋转90°得到△ABD,根据旋转的性质得AD=AC=1,BD=OC=1,原式可得到B点坐标为(2,1),然后根据反比例函数图象上点的坐标特征计算k的值.
    【详解】
    作AC⊥y轴于C,AD⊥x轴,BD⊥y轴,它们相交于D,如图,∵A点坐标为(1,1),∴AC=1,OC=1.
    ∵AO绕点A逆时针旋转90°,点O的对应B点,即把△AOC绕点A逆时针旋转90°得到△ABD,∴AD=AC=1,BD=OC=1,∴B点坐标为(2,1),∴k=2×1=2.
    故选B.

    【点睛】
    本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了坐标与图形变化﹣旋转.
    11、C
    【解析】
    根据全等三角形的判定定理进行判断.
    【详解】
    解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,
    故本选项不符合题意;
    B、由全等三角形的判定定理SAS证得图中两个小三角形全等,
    故本选项不符合题意;
    C、

    如图1,∵∠DEC=∠B+∠BDE,
    ∴x°+∠FEC=x°+∠BDE,
    ∴∠FEC=∠BDE,
    所以其对应边应该是BE和CF,而已知给的是BD=FC=3,
    所以不能判定两个小三角形全等,故本选项符合题意;
    D、

    如图2,∵∠DEC=∠B+∠BDE,
    ∴x°+∠FEC=x°+∠BDE,
    ∴∠FEC=∠BDE,
    ∵BD=EC=2,∠B=∠C,
    ∴△BDE≌△CEF,
    所以能判定两个小三角形全等,故本选项不符合题意;
    由于本题选择可能得不到全等三角形纸片的图形,
    故选C.
    【点睛】
    本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.
    12、A
    【解析】
    直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.
    【详解】
    解:A、(ab2)2=a2b4,故此选项正确;
    B、a2+a2=2a2,故此选项错误;
    C、a2•a3=a5,故此选项错误;
    D、a6÷a3=a3,故此选项错误;
    故选:A.
    【点睛】
    此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、630
    【解析】
    分析:两车相向而行5小时共行驶了900千米可得两车的速度之和为180千米/时,当相遇后车共行驶了720千米时,甲车到达B地,由此则可求得两车的速度.再根据甲车返回到A地总用时16.5小时,求出甲车返回时的速度即可求解.
    详解:设甲车,乙车的速度分别为x千米/时,y千米/时,
    甲车与乙车相向而行5小时相遇,则5(x+y)=900,解得x+y=180,
    相遇后当甲车到达B地时两车相距720千米,所需时间为720÷180=4小时,
    则甲车从A地到B需要9小时,故甲车的速度为900÷9=100千米/时,乙车的速度为180-100=80千米/时,
    乙车行驶900-720=180千米所需时间为180÷80=2.25小时,
    甲车从B地到A地的速度为900÷(16.5-5-4)=120千米/时.
    所以甲车从B地向A地行驶了120×2.25=270千米,
    当乙车到达A地时,甲车离A地的距离为900-270=630千米.
    点睛:利用函数图象解决实际问题,其关键在于正确理解函数图象横,纵坐标表示的意义,抓住交点,起点.终点等关键点,理解问题的发展过程,将实际问题抽象为数学问题,从而将这个数学问题变化为解答实际问题.
    14、20
    【解析】
    利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.
    【详解】
    设原来红球个数为x个,
    则有=,
    解得,x=20,
    经检验x=20是原方程的根.
    故答案为20.
    【点睛】
    本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.
    15、3
    【解析】
    分析:
    由已知条件易得:EF∥AB,且EF:AB=1:2,从而可得△CEF∽△CAB,且相似比为1:2,设S△CEF=x,根据相似三角形的性质可得方程:,解此方程即可求得△EFC的面积.
    详解:
    ∵在△ABC中,点E,F分别是AC,BC的中点,
    ∴EF是△ABC的中位线,
    ∴EF∥AB,EF:AB=1:2,
    ∴△CEF∽△CAB,
    ∴S△CEF:S△CAB=1:4,
    设S△CEF=x,
    ∵S△CAB=S△CEF+S四边形ABFE,S四边形ABFE=9,
    ∴,
    解得:,
    经检验:是所列方程的解.
    故答案为:3.
    点睛:熟悉三角形的中位线定理和相似三角形的面积比等于相似比的平方是正确解答本题的关键.
    16、.
    【解析】
    观察分母的变化为n的1次幂加1、2次幂加1、3次幂加1…,n次幂加1;分子的变化为:3、5、7、9…2n+1.
    【详解】
    解:∵a1=,a2=,a3=,a4=,a5=,…,
    ∴an=,
    故答案为:.
    【点睛】
    本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.
    17、40
    【解析】
    设A型号的计算器的每只进价为x元,B型号的计算器的每只进价为y元,根据“若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.
    【详解】
    设A型号的计算器的每只进价为x元,B型号的计算器的每只进价为y元,
    根据题意得:,
    解得:.
    答:A型号的计算器的每只进价为40元.
    【点睛】
    本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
    18、
    【解析】
    设雀、燕每1只各重x斤、y斤,根据等量关系:今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤,列出方程组求解即可.
    【详解】
    设雀、燕每1只各重x斤、y斤,根据题意,得

    整理,得
    故答案为
    【点睛】
    考查二元一次方程组得应用,解题的关键是分析题意,找出题中的等量关系.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1);(2)①;②
    【解析】
    (1)先求出种植C种树苗的人数,根据现种植A、B、C三种树苗一共480棵,可以列出等量关系,解出y与x之间的关系;
    (2)①分别求出种植A,B,C三种树苗的成本,然后相加即可;
    ②求出种植C种树苗工人的人数,然后用种植C种树苗工人的人数÷总人数即可求出概率.
    【详解】
    解:(1)设种植A种树苗的工人为x名,种植B种树苗的工人为y名,则种植C种树苗的人数为(80-x-y)人,
    根据题意,得:8x+6y+5(80-x-y)=480,
    整理,得:y=-3x+80;
    (2)①w=15×8x+12×6y+8×5(80-x-y)=80x+32y+3200,
    把y=-3x+80代入,得:w=-16x+5760,
    ②种植的总成本为5600元时,w=-16x+5760=5600,
    解得x=10,y=-3×10+80=50,
    即种植A种树苗的工人为10名,种植B种树苗的工人为50名,种植B种树苗的工人为:80-10-50=20名.
    采访到种植C种树苗工人的概率为:=.
    【点睛】
    本题主要考查了一次函数的实际问题,以及概率的求法,能够将实际问题转化成数学模型是解答此题的关键.
    20、(1)证明见解析(2)
    【解析】
    试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;
    (2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.
    试题解析:(1)证明:因为四边形ABCD是矩形,
    所以AD∥BC,
    所以∠PDO=∠QBO,
    又因为O为BD的中点,
    所以OB=OD,
    在△POD与△QOB中,
    ∠PDO=∠QBO,OB=OD,∠POD=∠QOB,
    所以△POD≌△QOB,
    所以OP=OQ.
    (2)解:PD=8-t,
    因为四边形PBQD是菱形,
    所以PD=BP=8-t,
    因为四边形ABCD是矩形,
    所以∠A=90°,
    在Rt△ABP中,
    由勾股定理得:,
    即,
    解得:t=,
    即运动时间为秒时,四边形PBQD是菱形.
    考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理.
    21、 (1)10;(2)原方程无解.
    【解析】
    (1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;
    (2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】
    (1)原式==10;
    (2)去分母得:3(5x﹣4)+3x﹣6=4x+10,
    解得:x=2,
    经检验:x=2是增根,原方程无解.
    【点睛】
    此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
    22、(1)y=-x2-2x+1,C(1,0)(2)当t=-2时,线段PE的长度有最大值1,此时P(-2,6)(2)存在这样的直线l,使得△MON为等腰三角形.所求Q点的坐标为
    (,2)或(,2)或(,2)或(,2)
    【解析】
    解:(1)∵直线y=x+1与x轴、y轴分别交于A、B两点,∴A(-1,0),B(0,1).
    ∵抛物线y=-x2+bx+c经过A、B两点,
    ∴,解得.
    ∴抛物线解析式为y=-x2-2x+1.
    令y=0,得-x2-2x+1=0,解得x1=-1,x2=1,
    ∴C(1,0).
    (2)如图1,
    设D(t,0).
    ∵OA=OB,∴∠BAO=15°.
    ∴E(t,t+1),P(t,-t2-2t+1).
    PE=yP-yE=-t2-2t+1-t-1=-t2-1t=-(t+2)2+1.
    ∴当t=-2时,线段PE的长度有最大值1,此时P(-2,6).
    (2)存在.如图2,过N点作NH⊥x轴于点H.
    设OH=m(m>0),∵OA=OB,∴∠BAO=15°.
    ∴NH=AH=1-m,∴yQ=1-m.
    又M为OA中点,∴MH=2-m.
    当△MON为等腰三角形时:
    ①若MN=ON,则H为底边OM的中点,
    ∴m=1,∴yQ=1-m=2.
    由-xQ2-2xQ+1=2,解得.
    ∴点Q坐标为(,2)或(,2).
    ②若MN=OM=2,则在Rt△MNH中,
    根据勾股定理得:MN2=NH2+MH2,即22=(1-m)2+(2-m)2,
    化简得m2-6m+8=0,解得:m1=2,m2=1(不合题意,舍去).
    ∴yQ=2,由-xQ2-2xQ+1=2,解得.
    ∴点Q坐标为(,2)或(,2).
    ③若ON=OM=2,则在Rt△NOH中,
    根据勾股定理得:ON2=NH2+OH2,即22=(1-m)2+m2,
    化简得m2-1m+6=0,∵△=-8<0,
    ∴此时不存在这样的直线l,使得△MON为等腰三角形.
    综上所述,存在这样的直线l,使得△MON为等腰三角形.所求Q点的坐标为
    (,2)或(,2)或(,2)或(,2).
    (1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式,并求出抛物线与x轴另一交点C的坐标.
    (2)求出线段PE长度的表达式,设D点横坐标为t,则可以将PE表示为关于t的二次函数,利用二次函数求极值的方法求出PE长度的最大值.
    (2)根据等腰三角形的性质和勾股定理,将直线l的存在性问题转化为一元二次方程问题,通过一元二次方程的判别式可知直线l是否存在,并求出相应Q点的坐标. “△MON是等腰三角形”,其中包含三种情况:MN=ON,MN=OM,ON=OM,逐一讨论求解.
    23、(1)40;(2)72;(3)1.
    【解析】
    (1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;
    (2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
    (3)用800乘以样本中最想去A景点的人数所占的百分比即可.
    【详解】
    (1)被调查的学生总人数为8÷20%=40(人);
    (2)最想去D景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:

    扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;
    (3)800×=1,所以估计“最想去景点B“的学生人数为1人.
    24、(1)见解析;(2)见解析;(3)AB=1
    【解析】
    (1)由垂径定理得出∠CPB=∠BCD,根据∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得证;
    (2)连接OP,知OP=OB,先证∠FPE=∠FEP得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,据此可得2∠APG=∠F,据此即可得证;
    (3)连接AE,取AE中点N,连接HN、PN,过点E作EM⊥PF,先证∠PAE=∠F,由tan∠PAE=tan∠F得,再证∠GAP=∠MPE,由sin∠GAP=sin∠MPE得,从而得出,即MF=GP,由3PF=5PG即,可设PG=3k,得PF=5k、MF=PG=3k、PM=2k,由∠FPE=∠PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,证∠PEM=∠ABP得BP=3k,继而可得BE=k=2,据此求得k=2,从而得出AP、BP的长,利用勾股定理可得答案.
    【详解】
    证明:(1)∵AB是⊙O的直径且AB⊥CD,
    ∴∠CPB=∠BCD,
    ∴∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED,
    ∴∠BCP=∠PED;
    (2)连接OP,则OP=OB,

    ∴∠OPB=∠OBP,
    ∵PF是⊙O的切线,
    ∴OP⊥PF,则∠OPF=90°,
    ∠FPE=90°﹣∠OPE,
    ∵∠PEF=∠HEB=90°﹣∠OBP,
    ∴∠FPE=∠FEP,
    ∵AB是⊙O的直径,
    ∴∠APB=90°,
    ∴∠APG+∠FPE=90°,
    ∴2∠APG+2∠FPE=180°,
    ∵∠F+∠FPE+∠PEF=180°,
    ∵∠F+2∠FPE=180°
    ∴2∠APG=∠F,
    ∴∠APG= ∠F;
    (3)连接AE,取AE中点N,连接HN、PN,过点E作EM⊥PF于M,

    由(2)知∠APB=∠AHE=90°,
    ∵AN=EN,
    ∴A、H、E、P四点共圆,
    ∴∠PAE=∠PHF,
    ∵PH=PF,
    ∴∠PHF=∠F,
    ∴∠PAE=∠F,
    tan∠PAE=tan∠F,
    ∴,
    由(2)知∠APB=∠G=∠PME=90°,
    ∴∠GAP=∠MPE,
    ∴sin∠GAP=sin∠MPE,
    则,
    ∴,
    ∴MF=GP,
    ∵3PF=5PG,
    ∴,
    设PG=3k,则PF=5k,MF=PG=3k,PM=2k
    由(2)知∠FPE=∠PEF,
    ∴PF=EF=5k,
    则EM=4k,
    ∴tan∠PEM=,tan∠F=,
    ∴tan∠PAE=,
    ∵PE=,
    ∴AP=k,
    ∵∠APG+∠EPM=∠EPM+∠PEM=90°,
    ∴∠APG=∠PEM,
    ∵∠APG+∠OPA=∠ABP+∠BAP=90°,且∠OAP=∠OPA,
    ∴∠APG=∠ABP,
    ∴∠PEM=∠ABP,
    则tan∠ABP=tan∠PEM,即,
    ∴,
    则BP=3k,
    ∴BE=k=2,
    则k=2,
    ∴AP=3、BP=6,
    根据勾股定理得,AB=1.
    【点睛】
    本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、四点共圆条件、相似三角形的判定与性质、三角函数的应用等知识点.
    25、见解析
    【解析】
    分析:(1)根据求出点的坐标,用待定系数法即可求出抛物线的解析式.
    (2)分两种情况进行讨论即可.
    (3)存在. 假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.分当平行四边形是平行四边形时,当平行四边形AONM是平行四边形时,当四边形AMON为平行四边形时,三种情况进行讨论.
    详解:(1)易证,得,
    ∴OC=2,∴C(0,2),
    ∵抛物线过点A(-1,0),B(4,0)
    因此可设抛物线的解析式为
    将C点(0,2)代入得:,即
    ∴抛物线的解析式为
    (2)如图2,

    当时,则P1(,2),
    当 时,
    ∴OC∥l,
    ∴,
    ∴P2H=·OC=5,
    ∴P2 (,5)
    因此P点的坐标为(,2)或(,5).
    (3)存在.
    假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.
    如图3,

    当平行四边形是平行四边形时,M(,),(,),
    当平行四边形AONM是平行四边形时,M(,),N(,),
    如图4,当四边形AMON为平行四边形时,MN与OA互相平分,此时可设M(,m),则

    ∵点N在抛物线上,
    ∴-m=-·(-+1)( --4)=-,
    ∴m=,
    此时M(,), N(-,-).
    综上所述,M(,),N(,)或M(,),N(,) 或 M(,), N(-,-).
    点睛:属于二次函数综合题,考查相似三角形的判定与性质,待定系数法求二次函数解析式等,注意分类讨论的思想方法在数学中的应用.
    26、 (1)y=﹣(x﹣1)2+4;(2)C(﹣1,0),D(3,0);6;(3)P(1+,),或P(1﹣,)
    【解析】
    (1)设抛物线顶点式解析式y=a(x-1)2+4,然后把点B的坐标代入求出a的值,即可得解;
    (2)令y=0,解方程得出点C,D坐标,再用三角形面积公式即可得出结论;
    (3)先根据面积关系求出点P的坐标,求出点P的纵坐标,代入抛物线解析式即可求出点P的坐标.
    【详解】
    解:(1)、∵抛物线的顶点为A(1,4),
    ∴设抛物线的解析式y=a(x﹣1)2+4,
    把点B(0,3)代入得,a+4=3,
    解得a=﹣1,
    ∴抛物线的解析式为y=﹣(x﹣1)2+4;
    (2)由(1)知,抛物线的解析式为y=﹣(x﹣1)2+4;
    令y=0,则0=﹣(x﹣1)2+4,
    ∴x=﹣1或x=3, ∴C(﹣1,0),D(3,0);
    ∴CD=4,
    ∴S△BCD=CD×|yB|=×4×3=6;
    (3)由(2)知,S△BCD=CD×|yB|=×4×3=6;CD=4,
    ∵S△PCD=S△BCD,
    ∴S△PCD=CD×|yP|=×4×|yP|=3,
    ∴|yP|= ,
    ∵点P在x轴上方的抛物线上,
    ∴yP>0,
    ∴yP= ,
    ∵抛物线的解析式为y=﹣(x﹣1)2+4;
    ∴=﹣(x﹣1)2+4,
    ∴x=1±,
    ∴P(1+ , ),或P(1﹣,).
    【点睛】
    本题考查的是二次函数的综合应用,熟练掌握二次函数的性质是解题的关键.
    27、 (1)3;(2) x﹣y,1.
    【解析】
    (1)根据特殊角的三角函数值、绝对值、负整数指数幂、零指数幂可以解答本题;
    (2)根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.
    【详解】
    (1)3tan30°+|2-|+()-1-(3-π)0-(-1)2018
    =3×+2-+3-1-1,
    =+2−+3-1-1,
    =3;
    (2)(x﹣)÷,
    =,
    =
    =x-y,
    当x=,y=-1时,原式=−+1=1.
    【点睛】
    本题考查特殊角的三角函数值、绝对值、负整数指数幂、零指数幂、分式的化简求值,解答本题的关键是明确它们各自的计算方法.

    相关试卷

    浙江省桐乡市2021-2022学年中考数学模拟预测题含解析: 这是一份浙江省桐乡市2021-2022学年中考数学模拟预测题含解析,共24页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    浙江省嘉兴市2021-2022学年中考数学模拟预测题含解析: 这是一份浙江省嘉兴市2021-2022学年中考数学模拟预测题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,已知等内容,欢迎下载使用。

    浙江省杭州下城区2021-2022学年中考数学模拟预测题含解析: 这是一份浙江省杭州下城区2021-2022学年中考数学模拟预测题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,一、单选题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map