2021-2022学年武汉新洲区六校联考中考一模数学试题含解析
展开
这是一份2021-2022学年武汉新洲区六校联考中考一模数学试题含解析,共22页。试卷主要包含了如果a﹣b=5,那么代数式,的整数部分是,下列运算结果为正数的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=120°,则∠D的度数为( )
A.30° B.60° C.50° D.40°
2.下列运算正确的是( )
A.a4+a2=a4 B.(x2y)3=x6y3
C.(m﹣n)2=m2﹣n2 D.b6÷b2=b3
3.如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于( )
A.8 B.4 C.12 D.16
4.如图,BC平分∠ABE,AB∥CD,E是CD上一点,若∠C=35°,则∠BED的度数为( )
A.70° B.65° C.62° D.60°
5.如图,是由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,则拿掉这个小立方体木块之后的几何体的俯视图是( )
A. B. C. D.
6.如果a﹣b=5,那么代数式(﹣2)•的值是( )
A.﹣ B. C.﹣5 D.5
7.如图,函数y=的图象记为c1,它与x轴交于点O和点A1;将c1绕点A1旋转180°得c2,交x轴于点A2;将c2绕点A2旋转180°得c3,交x轴于点A3…如此进行下去,若点P(103,m)在图象上,那么m的值是( )
A.﹣2 B.2 C.﹣3 D.4
8.的整数部分是( )
A.3 B.5 C.9 D.6
9.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度与时间之间的关系的图象是( )
A. B. C. D.
10.下列运算结果为正数的是( )
A.1+(–2) B.1–(–2) C.1×(–2) D.1÷(–2)
二、填空题(共7小题,每小题3分,满分21分)
11.如图,线段AB两端点坐标分别为A(﹣1,5)、B(3,3),线段CD两端点坐标分别为C(5,3)、D (3,﹣1)数学课外兴趣小组研究这两线段发现:其中一条线段绕着某点旋转一个角度可得到另一条线段,请写出旋转中心的坐标________.
12.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B,C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=,有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或;④0<BE≤,其中正确的结论是 ________(填入正确结论的序号).
13.如图,AB是半径为2的⊙O的弦,将沿着弦AB折叠,正好经过圆心O,点C是折叠后的上一动点,连接并延长BC交⊙O于点D,点E是CD的中点,连接AC,AD,EO.则下列结论:①∠ACB=120°,②△ACD是等边三角形,③EO的最小值为1,其中正确的是_____.(请将正确答案的序号填在横线上)
14.若不等式组有解,则m的取值范围是______.
15.如图,正方形ABCD的边长为2,点B与原点O重合,与反比例函数y=的图像交于E、F两点,若△DEF的面积为,则k的值_______ .
16.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n个图案中正三角形的个数为 (用含n的代数式表示).
17.在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都相等,若填在图中的数字如图所示,则x+y的值是_____.
2x
3
2
y
﹣3
4y
三、解答题(共7小题,满分69分)
18.(10分)一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.
19.(5分)如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC长为4米,求新传送带AC的长及新、原传送带触地点之间AB的长.(结果精确到0.1米)参考数据:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.414
20.(8分)讲授“轴对称”时,八年级教师设计了如下:四种教学方法:
① 教师讲,学生听
② 教师让学生自己做
③ 教师引导学生画图发现规律
④ 教师让学生对折纸,观察发现规律,然后画图
为调查教学效果,八年级教师将上述教学方法作为调研内容发到全年级8个班420名同学手中,要求每位同学选出自己最喜欢的一种.他随机抽取了60名学生的调查问卷,统计如图
(1) 请将条形统计图补充完整;
(2) 计算扇形统计图中方法③的圆心角的度数是 ;
(3) 八年级同学中最喜欢的教学方法是哪一种?选择这种教学方法的约有多少人?
21.(10分)某商场计划购进、两种新型节能台灯共盏,这两种台灯的进价、售价如表所示:
()若商场预计进货款为元,则这两种台灯各购进多少盏?
()若商场规定型台灯的进货数量不超过型台灯数量的倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
22.(10分)如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形BEDF是平行四边形;
(2)请添加一个条件使四边形BEDF为菱形.
23.(12分)如图,在等腰△ABC中,AB=BC,以AB为直径的⊙O与AC相交于点D,过点D作DE⊥BC交AB延长线于点E,垂足为点F.
(1)证明:DE是⊙O的切线;
(2)若BE=4,∠E=30°,求由、线段BE和线段DE所围成图形(阴影部分)的面积,
(3)若⊙O的半径r=5,sinA=,求线段EF的长.
24.(14分)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.
求证:AB=DC;试判断△OEF的形状,并说明理由.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
分析:根据平行线的性质求出∠C,求出∠DEC的度数,根据三角形内角和定理求出∠D的度数即可.
详解:∵AB∥CD,∴∠A+∠C=180°.
∵∠A=120°,∴∠C=60°.
∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.
故选A.
点睛:本题考查了平行线的性质和三角形内角和定理的应用,能根据平行线的性质求出∠C的度数是解答此题的关键.
2、B
【解析】
分析:根据合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,逐一计算判断即可.
详解:根据同类项的定义,可知a4与a2不是同类项,不能计算,故不正确;
根据积的乘方,等于个个因式分别乘方,可得(x2y)3=x6y3,故正确;
根据完全平方公式,可得(m-n)2=m2-2mn+n2,故不正确;
根据同底数幂的除法,可知b6÷b2=b4,不正确.
故选B.
点睛:此题主要考查了合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,熟记并灵活运用是解题关键.
3、A
【解析】
∵AB的中垂线交BC于D,AC的中垂线交BC于E,
∴DA=DB,EA=EC,
则△ADE的周长=AD+DE+AE=BD+DE+EC=BC=8,
故选A.
4、A
【解析】
由AB∥CD,根据两直线平行,内错角相等,即可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE的度数,继而求得答案.
【详解】
∵AB∥CD,∠C=35°,
∴∠ABC=∠C=35°,
∵BC平分∠ABE,
∴∠ABE=2∠ABC=70°,
∵AB∥CD,
∴∠BED=∠ABE=70°.
故选:A.
【点睛】
本题考查了平行线的性质,解题的关键是掌握平行线的性质进行解答.
5、B
【解析】
俯视图是从上面看几何体得到的图形,据此进行判断即可.
【详解】
由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,得
拿掉第一排的小正方形,
拿掉这个小立方体木块之后的几何体的俯视图是,
故选B.
【点睛】
本题主要考查了简单几何体的三视图,解题时注意:俯视图就是从几何体上面看到的图形.
6、D
【解析】
【分析】先对括号内的进行通分,进行分式的加减法运算,然后再进行分式的乘除法运算,最后把a-b=5整体代入进行求解即可.
【详解】(﹣2)•
=
=
=a-b,
当a-b=5时,原式=5,
故选D.
7、C
【解析】
求出与x轴的交点坐标,观察图形可知第奇数号抛物线都在x轴上方,然后求出到抛物线平移的距离,再根据向右平移横坐标加表示出抛物线的解析式,然后把点P的坐标代入计算即可得解.
【详解】
令,则=0,
解得,
,
由图可知,抛物线在x轴下方,
相当于抛物线向右平移4×(26−1)=100个单位得到得到,再将绕点旋转180°得,
此时的解析式为y=(x−100)(x−100−4)=(x−100)(x−104),
在第26段抛物线上,
m=(103−100)(103−104)=−3.
故答案是:C.
【点睛】
本题考查的知识点是二次函数图象与几何变换,解题关键是根据题意得到p点所在函数表达式.
8、C
【解析】
解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=1.故选C.
9、C
【解析】
首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.
【详解】
根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。
故选:C.
【点睛】
此题考查函数的图象,解题关键在于观察图形
10、B
【解析】
分别根据有理数的加、减、乘、除运算法则计算可得.
【详解】
解:A、1+(﹣2)=﹣(2﹣1)=﹣1,结果为负数;
B、1﹣(﹣2)=1+2=3,结果为正数;
C、1×(﹣2)=﹣1×2=﹣2,结果为负数;
D、1÷(﹣2)=﹣1÷2=﹣,结果为负数;
故选B.
【点睛】
本题主要考查有理数的混合运算,熟练掌握有理数的四则运算法则是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、或
【解析】
分点A的对应点为C或D两种情况考虑:当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,点E即为旋转中心;当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,点M即为旋转中心此题得解.
【详解】
当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,如图1所示:
点的坐标为,B点的坐标为,
点的坐标为;
当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,如图2所示:
点的坐标为,B点的坐标为,
点的坐标为.
综上所述:这个旋转中心的坐标为或.
故答案为或.
【点睛】
本题考查了坐标与图形变化中的旋转,根据给定点的坐标找出旋转中心的坐标是解题的关键.
12、②③.
【解析】
试题解析:①∵∠ADE=∠B,∠DAE=∠BAD,
∴△ADE∽△ABD;
故①错误;
②作AG⊥BC于G,
∵∠ADE=∠B=α,tan∠α=,
∴,
∴,
∴cosα=,
∵AB=AC=15,
∴BG=1,
∴BC=24,
∵CD=9,
∴BD=15,
∴AC=BD.
∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,
∴∠EDB=∠DAC,
在△ACD与△DBE中,
,
∴△ACD≌△BDE(ASA).
故②正确;
③当∠BED=90°时,由①可知:△ADE∽△ABD,
∴∠ADB=∠AED,
∵∠BED=90°,
∴∠ADB=90°,
即AD⊥BC,
∵AB=AC,
∴BD=CD,
∴∠ADE=∠B=α且tan∠α=,AB=15,
∴
∴BD=1.
当∠BDE=90°时,易证△BDE∽△CAD,
∵∠BDE=90°,
∴∠CAD=90°,
∵∠C=α且cosα=,AC=15,
∴cosC=,
∴CD=.
∵BC=24,
∴BD=24-=
即当△DCE为直角三角形时,BD=1或.
故③正确;
④易证得△BDE∽△CAD,由②可知BC=24,
设CD=y,BE=x,
∴,
∴,
整理得:y2-24y+144=144-15x,
即(y-1)2=144-15x,
∴0<x≤,
∴0<BE≤.
故④错误.
故正确的结论为:②③.
考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质.
13、①②
【解析】
根据折叠的性质可知,结合垂径定理、三角形的性质、同圆或等圆中圆周角与圆心的性质等可以判断①②是否正确,EO的最小值问题是个难点,这是一个动点问题,只要把握住E在什么轨迹上运动,便可解决问题.
【详解】
如图1,连接OA和OB,作OF⊥AB.
由题知: 沿着弦AB折叠,正好经过圆心O
∴OF=OA= OB
∴∠AOF=∠BOF=60°
∴∠AOB=120°
∴∠ACB=120°(同弧所对圆周角相等)
∠D=∠AOB=60°(同弧所对的圆周角是圆心角的一半)
∴∠ACD=180°-∠ACB=60°
∴△ACD是等边三角形(有两个角是60°的三角形是等边三角形)
故,①②正确
下面研究问题EO的最小值是否是1
如图2,连接AE和EF
∵△ACD是等边三角形,E是CD中点
∴AE⊥BD(三线合一)
又∵OF⊥AB
∴F是AB中点
即,EF是△ABE斜边中线
∴AF=EF=BF
即,E点在以AB为直径的圆上运动.
所以,如图3,当E、O、F在同一直线时,OE长度最小
此时,AE=EF,AE⊥EF
∵⊙O的半径是2,即OA=2,OF=1
∴AF= (勾股定理)
∴OE=EF-OF=AF-OF=-1
所以,③不正确
综上所述:①②正确,③不正确.
故答案是:①②.
【点睛】
考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.
14、
【解析】
分析:解出不等式组的解集,然后根据解集的取值范围来确定m的取值范围.
解答:解:由1-x≤2得x≥-1又∵x>m
根据同大取大的原则可知:
若不等式组的解集为x≥-1时,则m≤-1
若不等式组的解集为x≥m时,则m≥-1.
故填m≤-1或m≥-1.
点评:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集再利用不等式组的解集的确定原则来确定未知数的取值范围.
15、1
【解析】
利用对称性可设出E、F的两点坐标,表示出△DEF的面积,可求出k的值.
【详解】
解:设AF=a(a<2),则F(a,2),E(2,a),
∴FD=DE=2−a,
∴S△DEF=DF•DE==,
解得a=或a=(不合题意,舍去),
∴F(,2),
把点F(,2)代入
解得:k=1,
故答案为1.
【点睛】
本题主要考查反比例函数与正方形和三角形面积的运用,表示出E和F的坐标是关键.
16、4n+1
【解析】
分析可知规律是每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.
【详解】
解:第一个图案正三角形个数为6=1+4;
第二个图案正三角形个数为1+4+4=1+1×4;
第三个图案正三角形个数为1+1×4+4=1+3×4;
…;
第n个图案正三角形个数为1+(n﹣1)×4+4=1+4n=4n+1.
故答案为4n+1.
考点:规律型:图形的变化类.
17、0
【解析】
根据题意列出方程组,求出方程组的解即可得到结果.
【详解】
解:根据题意得:,即,
解得:,
则x+y=﹣1+1=0,
故答案为0
【点睛】
此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.
三、解答题(共7小题,满分69分)
18、路灯高CD为5.1米.
【解析】
根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.
【详解】
设CD长为x米,
∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,
∴MA∥CD∥BN,
∴EC=CD=x米,
∴△ABN∽△ACD,
∴=,即,
解得:x=5.1.
经检验,x=5.1是原方程的解,
∴路灯高CD为5.1米.
【点睛】
本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.
19、新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.
【解析】
根据题意得出:∠A=36°,∠CBD=15°,BC=1,即可得出BD的长,再表示出AD的长,进而求出AB的长.
【详解】
解:如图,作CD⊥AB于点D,由题意可得:∠A=36°,∠CBD=15°,BC=1.
在Rt△BCD中,sin∠CBD=,∴CD=BCsin∠CBD=2.
∵∠CBD=15°,∴BD=CD=2.
在Rt△ACD中,sinA=,tanA=,∴AC=≈≈1.8,AD==,∴AB=AD﹣BD=﹣2=﹣2×1.111≈3.87﹣2.83=1.21≈1.2.
答:新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.
【点睛】
本题考查了坡度坡角问题,正确构建直角三角形再求出BD的长是解题的关键.
20、解:(1)见解析; (2) 108°;(3) 最喜欢方法④,约有189人.
【解析】
(1)由题意可知:喜欢方法②的学生有60-6-18-27=9(人);
(2)求方法③的圆心角应先求所占比值,再乘以360°;
(3)根据条形的高低可判断喜欢方法④的学生最多,人数应该等于总人数乘以喜欢方法④所占的比例;
【详解】
(1)方法②人数为60−6−18−27=9(人);
补条形图如图:
(2)方法③的圆心角为
故答案为108°
(3)由图可以看出喜欢方法④的学生最多,人数为 (人);
【点睛】
考查扇形统计图,条形统计图,用样本估计总体,比较基础,难度不大,是中考常考题型.
21、(1)购进型台灯盏,型台灯25盏;
(2)当商场购进型台灯盏时,商场获利最大,此时获利为元.
【解析】
试题分析:(1)设商场应购进A型台灯x盏,然后根据关系:商场预计进货款为3500元,列方程可解决问题;(2)设商场销售完这批台灯可获利y元,然后求出y与x的函数关系式,然后根据一次函数的性质和自变量的取值范围可确定获利最多时的方案.
试题解析:解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,
根据题意得,30x+50(100﹣x)=3500,
解得x=75,
所以,100﹣75=25,
答:应购进A型台灯75盏,B型台灯25盏;
(2)设商场销售完这批台灯可获利y元,
则y=(45﹣30)x+(70﹣50)(100﹣x),
=15x+2000﹣20x,
=﹣5x+2000,
∵B型台灯的进货数量不超过A型台灯数量的3倍,
∴100﹣x≤3x,
∴x≥25,
∵k=﹣5<0,
∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)
答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.
考点:1.一元一次方程的应用;2.一次函数的应用.
22、见解析
【解析】
(1)根据平行四边形的性质可得AB∥DC,OB=OD,由平行线的性质可得∠OBE=∠ODF,利用ASA判定△BOE≌△DOF,由全等三角形的性质可得EO=FO,根据对角线互相平分的四边形是平行四边形即可判定四边形BEDF是平行四边形;(2)添加EF⊥BD(本题添加的条件不唯一),根据对角线互相垂直的平行四边形为菱形即可判定平行四边形BEDF为菱形.
【详解】
(1)∵四边形ABCD是平行四边形,O是BD的中点,
∴AB∥DC,OB=OD,
∴∠OBE=∠ODF,
又∵∠BOE=∠DOF,
∴△BOE≌△DOF(ASA),
∴EO=FO,
∴四边形BEDF是平行四边形;
(2)EF⊥BD.
∵四边形BEDF是平行四边形,
∵EF⊥BD,
∴平行四边形BEDF是菱形.
【点睛】
本题考查了平行四边形的性质与判定、菱形的判定,熟知平行四边形的性质与判定及菱形的判定方法是解决问题的关键.
23、(1)见解析 (2)8(3)
【解析】
分析:(1)连接BD、OD,由AB=BC及∠ADB=90°知AD=CD,根据AO=OB知OD是△ABC的中位线,据此知OD∥BC,结合DE⊥BC即可得证;
(2)设⊙O的半径为x,则OB=OD=x,在Rt△ODE中由sinE=求得x的值,再根据S阴影=S△ODE-S扇形ODB计算可得答案.
(3)先证Rt△DFB∽Rt△DCB得,据此求得BF的长,再证△EFB∽△EDO得,据此求得EB的长,继而由勾股定理可得答案.
详解:(1)如图,连接BD、OD,
∵AB是⊙O的直径,
∴∠BDA=90°,
∵BA=BC,
∴AD=CD,
又∵AO=OB,
∴OD∥BC,
∵DE⊥BC,
∴OD⊥DE,
∴DE是⊙O的切线;
(2)设⊙O的半径为x,则OB=OD=x,
在Rt△ODE中,OE=4+x,∠E=30°,
∴,
解得:x=4,
∴DE=4,S△ODE=×4×4=8,
S扇形ODB=,
则S阴影=S△ODE-S扇形ODB=8-;
(3)在Rt△ABD中,BD=ABsinA=10×=2,
∵DE⊥BC,
∴Rt△DFB∽Rt△DCB,
∴,即,
∴BF=2,
∵OD∥BC,
∴△EFB∽△EDO,
∴,即,
∴EB=,
∴EF=.
点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、中位线定理、三角函数的应用及相似三角形的判定与性质等知识点.
24、(1)证明略
(2)等腰三角形,理由略
【解析】
证明:(1)∵BE=CF,
∴BE+EF=CF+EF, 即BF=CE.
又∵∠A=∠D,∠B=∠C,
∴△ABF≌△DCE(AAS),
∴AB=DC.
(2)△OEF为等腰三角形
理由如下:∵△ABF≌△DCE,
∴∠AFB=∠DEC.
∴OE=OF.
∴△OEF为等腰三角形.
相关试卷
这是一份武汉新洲区六校联考2022年中考数学四模试卷含解析,共16页。试卷主要包含了计算等内容,欢迎下载使用。
这是一份武汉武昌区五校联考2021-2022学年中考四模数学试题含解析,共18页。试卷主要包含了答题时请按要求用笔,二次函数y=,的相反数是等内容,欢迎下载使用。
这是一份湖北省武汉新洲区五校联考2022年中考数学猜题卷含解析,共16页。试卷主要包含了答题时请按要求用笔,不等式组的正整数解的个数是,下列运算正确的是等内容,欢迎下载使用。