2022届安徽庐江县达标名校中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.实数 的相反数是 ( )
A.- B. C. D.
2.若一次函数y=(2m﹣3)x﹣1+m的图象不经过第三象限,则m的取值范图是( )
A.1<m< B.1≤m< C.1<m≤ D.1≤m≤
3.如图,AD∥BC,AC平分∠BAD,若∠B=40°,则∠C的度数是( )
A.40° B.65° C.70° D.80°
4.如图,AB∥CD,FE⊥DB,垂足为E,∠1=60°,则∠2的度数是( )
A.60° B.50° C.40° D.30°
5.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是( )
A.两车同时到达乙地
B.轿车在行驶过程中进行了提速
C.货车出发3小时后,轿车追上货车
D.两车在前80千米的速度相等
6.如图,是的直径,弦,,,则阴影部分的面积为( )
A.2π B.π C. D.
7.已知二次函数y=(x+m)2–n的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是( )
A. B. C. D.
8.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是( )
A.30,28 B.26,26 C.31,30 D.26,22
9.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大.
A.3 B.4 C.5 D.6
10.下列运算不正确的是
A. B.
C. D.
11.如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是( )
A.40° B.50° C.60° D.140°
12.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( )
A.360元 B.720元 C.1080元 D.2160元
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.分解因式:a3-12a2+36a=______.
14.如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为_____.
15.如图,为的直径,与相切于点,弦.若,则______.
16.计算_______.
17.如图,五边形是正五边形,若,则__________.
18.如图,在ABCD中,AB=8,P、Q为对角线AC的三等分点,延长DP交AB于点M,延长MQ交CD于点N,则CN=__________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:
请将条形统计图补全;获得一等奖的同学中有来自七年级,有来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.
20.(6分)如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据≈1.414,≈1.732)
21.(6分)如图,二次函数的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).求抛物线与直线AC的函数解析式;若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系式;若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请求出满足条件的所有点E的坐标.
22.(8分)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.
判断AF与⊙O的位置关系并说明理由;若⊙O的半径为4,AF=3,求AC的长.
23.(8分)在某校举办的 2012 年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品 200 个以上可以按折扣价出售;购买 200 个以下(包括 200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要 1050 元;若多买 35 个,则按折扣价付款,恰好共需 1050 元.设小王按原计划购买纪念品 x 个.
(1)求 x 的范围;
(2)如果按原价购买 5 个纪念品与按打折价购买 6 个纪念品的钱数相同,那么小王原计划购买多少个纪念品?
24.(10分)(1)如图1,半径为2的圆O内有一点P,切OP=1,弦AB过点P,则弦AB长度的最大值为__________;最小值为 ___________.
图 ①
(2)如图2,△ABC是葛叔叔家的菜地示意图,其中∠ABC=90°,AB=80米,BC=60米,现在他利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔想建的鱼塘是四边形ABCD,且满足∠ADC=60°,你认为葛叔叔的想法能实现吗?若能,求出这个四边形鱼塘面积和周长的最大值;若不能,请说明理由.
图 ②
25.(10分)某汽车专卖店销售A,B两种型号的汽车.上周销售额为96万元:本周销售额为62万元,销售情况如下表:
A型汽车
B型汽车
上周
1
3
本周
2
1
(1)求每辆A型车和B型车的售价各为多少元
(2)甲公司拟向该店购买A,B两种型号的汽车共6辆,购车费不少于130万元,且不超过140万元,则有哪几种购车方案?哪种购车方案花费金额最少?
26.(12分)△ABC内接于⊙O,AC为⊙O的直径,∠A=60°,点D在AC上,连接BD作等边三角形BDE,连接OE.
如图1,求证:OE=AD;如图2,连接CE,求证:∠OCE=∠ABD;如图3,在(2)的条件下,延长EO交⊙O于点G,在OG上取点F,使OF=2OE,延长BD到点M使BD=DM,连接MF,若tan∠BMF=,OD=3,求线段CE的长.
27.(12分)在平面直角坐标系中,点 , ,将直线平移与双曲线在第一象限的图象交于、两点.
(1)如图1,将绕逆时针旋转得与对应,与对应),在图1中画出旋转后的图形并直接写出、坐标;
(2)若,
①如图2,当时,求的值;
②如图3,作轴于点,轴于点,直线与双曲线有唯一公共点时,的值为 .
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
根据相反数的定义即可判断.
【详解】
实数 的相反数是-
故选A.
【点睛】
此题主要考查相反数的定义,解题的关键是熟知相反数的定义即可求解.
2、B
【解析】
根据一次函数的性质,根据不等式组即可解决问题;
【详解】
∵一次函数y=(2m-3)x-1+m的图象不经过第三象限,
∴,
解得1≤m<.
故选:B.
【点睛】
本题考查一次函数的图象与系数的关系等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
3、C
【解析】
根据平行线性质得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度数.
【详解】
解:∵AD∥BC,
∴∠B+∠BAD=180°,
∵∠B=40°,
∴∠BAD=140°,
∵AC平分∠DAB,
∴∠DAC=∠BAD=70°,
∵A∥BC,
∴∠C=∠DAC=70°,
故选C.
【点睛】
本题考查了平行线性质和角平分线定义,关键是求出∠DAC或∠BAC的度数.
4、D
【解析】
由EF⊥BD,∠1=60°,结合三角形内角和为180°即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.
【详解】
解:在△DEF中,∠1=60°,∠DEF=90°,
∴∠D=180°-∠DEF-∠1=30°.
∵AB∥CD,
∴∠2=∠D=30°.
故选D.
【点睛】
本题考查平行线的性质以及三角形内角和为180°,解题关键是根据平行线的性质,找出相等、互余或互补的角.
5、B
【解析】
①根据函数的图象即可直接得出结论;②求得直线OA和DC的解析式,求得交点坐标即可;③由图象无法求得B的横坐标;④分别进行运算即可得出结论.
【详解】
由题意和图可得,
轿车先到达乙地,故选项A错误,
轿车在行驶过程中进行了提速,故选项B正确,
货车的速度是:300÷5=60千米/时,轿车在BC段对应的速度是:千米/时,故选项D错误,
设货车对应的函数解析式为y=kx,
5k=300,得k=60,
即货车对应的函数解析式为y=60x,
设CD段轿车对应的函数解析式为y=ax+b,
,得,
即CD段轿车对应的函数解析式为y=110x-195,
令60x=110x-195,得x=3.9,
即货车出发3.9小时后,轿车追上货车,故选项C错误,
故选:B.
【点睛】
此题考查一次函数的应用,解题的关键在于利用题中信息列出函数解析式
6、D
【解析】
分析:连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可.
详解:连接OD,
∵CD⊥AB,
∴ (垂径定理),
故
即可得阴影部分的面积等于扇形OBD的面积,
又∵
∴ (圆周角定理),
∴OC=2,
故S扇形OBD=
即阴影部分的面积为.
故选D.
点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.
7、C
【解析】
试题解析:观察二次函数图象可知:
∴一次函数y=mx+n的图象经过第一、二、四象限,反比例函数的图象在第二、四象限.
故选D.
8、B.
【解析】
试题分析:由图可知,把7个数据从小到大排列为22,22,23,1,28,30,31,中位数是第4位数,第4位是1,所以中位数是1.平均数是(22×2+23+1+28+30+31)÷7=1,所以平均数是1.故选B.
考点:中位数;加权平均数.
9、C
【解析】
解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,
其中得到的编号相加后得到的值为{2,3,1,5,6,7,8}
和为2的只有1+1;
和为3的有1+2;2+1;
和为1的有1+3;2+2;3+1;
和为5的有1+1;2+3;3+2;1+1;
和为6的有2+1;1+2;
和为7的有3+1;1+3;
和为8的有1+1.
故p(5)最大,故选C.
10、B
【解析】
,B是错的,A、C、D运算是正确的,故选B
11、A
【解析】
试题分析:根据直角三角形两锐角互余求出∠3,再根据两直线平行,同位角相等解答.
解:∵DB⊥BC,∠2=50°,
∴∠3=90°﹣∠2=90°﹣50°=40°,
∵AB∥CD,
∴∠1=∠3=40°.
故选A.
12、C
【解析】
根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.
【详解】
3m×2m=6m2,
∴长方形广告牌的成本是120÷6=20元/m2,
将此广告牌的四边都扩大为原来的3倍,
则面积扩大为原来的9倍,
∴扩大后长方形广告牌的面积=9×6=54m2,
∴扩大后长方形广告牌的成本是54×20=1080元,
故选C.
【点睛】
本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、a(a-6)2
【解析】
原式提取a,再利用完全平方公式分解即可.
【详解】
原式=a(a2-12a+36)=a(a-6)2,
故答案为a(a-6)2
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.
14、
【解析】
分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.
详解:∵AB=4,BC=3,
∴AC=BD=5,
转动一次A的路线长是:
转动第二次的路线长是:
转动第三次的路线长是:
转动第四次的路线长是:0,
以此类推,每四次循环,
故顶点A转动四次经过的路线长为:
∵2017÷4=504…1,
∴顶点A转动四次经过的路线长为:
故答案为
点睛:考查旋转的性质和弧长公式,熟记弧长公式是解题的关键.
15、1
【解析】
利用切线的性质得,利用直角三角形两锐角互余可得,再根据平行线的性质得到,,然后根据等腰三角形的性质求出的度数即可.
【详解】
∵与相切于点,
∴AC⊥AB,
∴,
∴,
∵,
∴,,
∵,
∴,
∴.
故答案为1.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
16、
【解析】
根据同底数幂的乘法法则计算即可.
【详解】
故答案是:
【点睛】
本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法运算法则是解题的关键.
17、72
【解析】
分析:延长AB交于点F,根据得到∠2=∠3,根据五边形是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.
详解:延长AB交于点F,
∵,
∴∠2=∠3,
∵五边形是正五边形,
∴∠ABC=108°,
∴∠FBC=72°,
∠1-∠2=∠1-∠3=∠FBC=72°
故答案为:72°.
点睛:此题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.
18、1
【解析】
根据平行四边形定义得:DC∥AB,由两角对应相等可得:△NQC∽△MQA,△DPC∽△MPA,列比例式可得CN的长.
【详解】
∵四边形ABCD是平行四边形,
∴DC∥AB,
∴∠CNQ=∠AMQ,∠NCQ=∠MAQ,
∴△NQC∽△MQA,
同理得:△DPC∽△MPA,
∵P、Q为对角线AC的三等分点,
∴,,
设CN=x,AM=1x,
∴,
解得,x=1,
∴CN=1,
故答案为1.
【点睛】
本题考查了平行四边形的性质和相似三角形的判定和性质,熟练掌握两角对应相等,两三角形相似的判定方法是关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)答案见解析;(2).
【解析】
【分析】(1)根据参与奖有10人,占比25%可求得获奖的总人数,用总人数减去二等奖、三等奖、鼓励奖、参与奖的人数可求得一等奖的人数,据此补全条形图即可;
(2)根据题意分别求出七年级、八年级、九年级获得一等奖的人数,然后通过列表或画树状图法进行求解即可得.
【详解】(1)10÷25%=40(人),
获一等奖人数:40-8-6-12-10=4(人),
补全条形图如图所示:
(2)七年级获一等奖人数:4×=1(人),
八年级获一等奖人数:4×=1(人),
∴ 九年级获一等奖人数:4-1-1=2(人),
七年级获一等奖的同学用M表示,八年级获一等奖的同学用N表示,
九年级获一等奖的同学用P1 、P2表示,树状图如下:
共有12种等可能结果,其中获得一等奖的既有七年级又有九年级人数的结果有4种,
则所选出的两人中既有七年级又有九年级同学的概率P=.
【点评】此题考查了统计与概率综合,理解扇形统计图与条形统计图的意义及列表法或树状图法是解题关键.
20、17.3米.
【解析】
分析:过点C作于D,根据,得到 ,在中,解三角形即可得到河的宽度.
详解:过点C作于D,
∵
∴
∴米,
在中,
∵
∴
∴
∴米,
∴米.
答:这条河的宽是米.
点睛:考查解直角三角形的应用,作出辅助线,构造直角三角形是解题的关键.
21、(1)(1)S=﹣m1﹣4m+4(﹣4<m<0)(3)(﹣3,1)、(,﹣1)、(,﹣1)
【解析】
(1)把点A的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A,C两点的坐标,可求得直线AC的函数解析式;
(1)先过点D作DH⊥x轴于点H,运用割补法即可得到:四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,据此列式计算化简就可求得S关于m的函数关系;
(3)由于AC确定,可分AC是平行四边形的边和对角线两种情况讨论,得到点E与点C的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E的坐标.
【详解】
(1)∵A(﹣4,0)在二次函数y=ax1﹣x+1(a≠0)的图象上,
∴0=16a+6+1,
解得a=﹣,
∴抛物线的函数解析式为y=﹣x1﹣x+1;
∴点C的坐标为(0,1),
设直线AC的解析式为y=kx+b,则
,
解得,
∴直线AC的函数解析式为:;
(1)∵点D(m,n)是抛物线在第二象限的部分上的一动点,
∴D(m,﹣m1﹣m+1),
过点D作DH⊥x轴于点H,则DH=﹣m1﹣m+1,AH=m+4,HO=﹣m,
∵四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,
∴S=(m+4)×(﹣m1﹣m+1)+(﹣m1﹣m+1+1)×(﹣m),
化简,得S=﹣m1﹣4m+4(﹣4<m<0);
(3)①若AC为平行四边形的一边,则C、E到AF的距离相等,
∴|yE|=|yC|=1,
∴yE=±1.
当yE=1时,解方程﹣x1﹣x+1=1得,
x1=0,x1=﹣3,
∴点E的坐标为(﹣3,1);
当yE=﹣1时,解方程﹣x1﹣x+1=﹣1得,
x1=,x1=,
∴点E的坐标为(,﹣1)或(,﹣1);
②若AC为平行四边形的一条对角线,则CE∥AF,
∴yE=yC=1,
∴点E的坐标为(﹣3,1).
综上所述,满足条件的点E的坐标为(﹣3,1)、(,﹣1)、(,﹣1).
22、解:(1)AF与圆O的相切.理由为:
如图,连接OC,
∵PC为圆O切线,∴CP⊥OC.
∴∠OCP=90°.
∵OF∥BC,
∴∠AOF=∠B,∠COF=∠OCB.
∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.
∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,
∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.
∴AF为圆O的切线,即AF与⊙O的位置关系是相切.
(2)∵△AOF≌△COF,∴∠AOF=∠COF.
∵OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC.
∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根据勾股定理得:OF=1.
∵S△AOF=•OA•AF=•OF•AE,∴AE=.
∴AC=2AE=.
【解析】
试题分析:(1)连接OC,先证出∠3=∠2,由SAS证明△OAF≌△OCF,得对应角相等∠OAF=∠OCF,再根据切线的性质得出∠OCF=90°,证出∠OAF=90°,即可得出结论;
(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE.
试题解析:(1)连接OC,如图所示:
∵AB是⊙O直径,
∴∠BCA=90°,
∵OF∥BC,
∴∠AEO=90°,∠1=∠2,∠B=∠3,
∴OF⊥AC,
∵OC=OA,
∴∠B=∠1,
∴∠3=∠2,
在△OAF和△OCF中,
,
∴△OAF≌△OCF(SAS),
∴∠OAF=∠OCF,
∵PC是⊙O的切线,
∴∠OCF=90°,
∴∠OAF=90°,
∴FA⊥OA,
∴AF是⊙O的切线;
(2)∵⊙O的半径为4,AF=3,∠OAF=90°,
∴OF==1
∵FA⊥OA,OF⊥AC,
∴AC=2AE,△OAF的面积=AF•OA=OF•AE,
∴3×4=1×AE,
解得:AE=,
∴AC=2AE=.
考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质.
23、(1)0<x≤200,且 x是整数(2)175
【解析】
(1)根据商场的规定确定出x的范围即可;
(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.
【详解】
(1)根据题意得:0<x≤200,且x为整数;
(2)设小王原计划购买x个纪念品,
根据题意得:,
整理得:5x+175=6x,
解得:x=175,
经检验x=175是分式方程的解,且满足题意,
则小王原计划购买175个纪念品.
【点睛】
此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.
24、(1)弦AB长度的最大值为4,最小值为2;(2)面积最大值为(2500+2400)平方米,周长最大值为340米.
【解析】
(1)当AB是过P点的直径时,AB最长;当AB⊥OP时,AB最短,分别求出即可.(2)如图在△ABC的一侧以AC为边做等边三角形AEC,再做△AEC的外接圆,则满足∠ADC=60°的点D在优弧AEC上(点D不与A、C重合),当D与E重合时,S△ADC最大值=S△AEC,由S△ABC为定值,故此时四边形ABCD的面积最大,再根据勾股定理和等边三角形的性质求出此时的面积与周长即可.
【详解】
(1)(1)当AB是过P点的直径时,AB最长=2×2=4;
当AB⊥OP时,AB最短, AP=
∴AB=2
(2)如图,在△ABC的一侧以AC为边做等边三角形AEC,
再做△AEC的外接圆,
当D与E重合时,S△ADC最大
故此时四边形ABCD的面积最大,
∵∠ABC=90°,AB=80,BC=60
∴AC=
∴周长为AB+BC+CD+AE=80+60+100+100=340(米)
S△ADC=
S△ABC=
∴四边形ABCD面积最大值为(2500+2400)平方米.
【点睛】
此题主要考查圆的综合利用,解题的关键是熟知圆的性质定理与垂径定理.
25、 (1) A型车售价为18万元,B型车售价为26万元. (2) 方案一:A型车2辆,B型车4辆;方案二:A型车3辆,B型车3辆;方案二花费少.
【解析】
(1)根据题意列出二元一次方程组即可求解;(2)由题意列出不等式即可求解.
【详解】
解:(1)设A型车售价为x元,B型车售价为y元,则:
解得:
答:A型车售价为18万元,B型车售价为26万元.
(2)设A型车购买m辆,则B型车购买(6-m)辆,
∴ 130≤18m+26(6-m) ≤140,∴:2≤m≤
方案一:A型车2辆,B型车4辆;方案二:A型车3辆,B型车3辆;
∴方案二花费少
【点睛】
此题主要考查二元一次方程组与不等式的应用,解题的关键是根据题意列出方程组与不等式进行求解.
26、 (1)证明见解析;(2)证明见解析;(3)CE=.
【解析】
(1)连接OB,证明△ABD≌△OBE,即可证出OE=AD.
(2)连接OB,证明△OCE≌△OBE,则∠OCE=∠OBE,由(1)的全等可知∠ABD=∠OBE,则∠OCE=∠ABD.
(3)过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,则△ADB≌△MQD,四边形MQOG为平行四边形,∠DMF=∠EDN,再结合特殊角度和已知的线段长度求出CE的长度即可.
【详解】
解:(1)如图1所示,连接OB,
∵∠A=60°,OA=OB,
∴△AOB为等边三角形,
∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,
∵△DBE为等边三角形,
∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,
∴∠ABD=∠OBE,
∴△ADB≌△OBE(SAS),
∴OE=AD;
(2)如图2所示,
由(1)可知△ADB≌△OBE,
∴∠BOE=∠A=60°,∠ABD=∠OBE,
∵∠BOA=60°,
∴∠EOC=∠BOE =60°,
又∵OB=OC,OE=OE,
∴△BOE≌△COE(SAS),
∴∠OCE=∠OBE,
∴∠OCE=∠ABD;
(3)如图3所示,过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,
∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,
∴△ADB≌△MQD(ASA),
∴AB=MQ,
∵∠A=60°,∠ABC=90°,
∴∠ACB=30°,
∴AB==AO=CO=OG,
∴MQ=OG,
∵AB∥GO,
∴MQ∥GO,
∴四边形MQOG为平行四边形,
设AD为x,则OE=x,OF=2x,
∵OD=3,
∴OA=OG=3+x,GF=3﹣x,
∵DQ=AD=x,
∴OQ=MG=3﹣x,
∴MG=GF,
∵∠DOG=60°,
∴∠MGF=120°,
∴∠GMF=∠GFM=30°,
∵∠QMD=∠ABD=∠ODE,∠ODN=30°,
∴∠DMF=∠EDN,
∵OD=3,
∴ON=,DN=,
∵tan∠BMF=,
∴tan∠NDE=,
∴ ,
解得x=1,
∴NE=,
∴DE=,
∴CE=.
故答案为(1)证明见解析;(2)证明见解析;(3)CE=.
【点睛】
本题考查圆的相关性质以及与圆有关的计算,全等三角形的性质和判定,第三问构造全等三角形找到与∠BMF相等的角为解题的关键.
27、(1)作图见解析,,;(2)①k=6;②.
【解析】
(1)根据题意,画出对应的图形,根据旋转的性质可得,,从而求出点E、F的坐标;
(2)过点作轴于,过点作轴于,过点作于,根据相似三角形的判定证出,列出比例式,设,根据反比例函数解析式可得(Ⅰ);
①根据等角对等边可得,可列方程(Ⅱ),然后联立方程即可求出点D的坐标,从而求出k的值;
②用m、n表示出点M、N的坐标即可求出直线MN的解析式,利于点D和点C的坐标即可求出反比例函数的解析式,联立两个解析式,令△=0即可求出m的值,从而求出k的值.
【详解】
解:(1)点 , ,
,,
如图1,
由旋转知,,,,
点在轴正半轴上,点在轴负半轴上,
,;
(2)过点作轴于,过点作轴于,过点作于,
,,
,
,
,
,
,
,
,
,
,,,
,,
,
设,
,
,,
点,在双曲线上,
,
(Ⅰ)
①,
,
,
,
(Ⅱ),
联立(Ⅰ)(Ⅱ)解得:,,
;
②如图3,
,,
,,
,
,
直线的解析式为(Ⅲ),
双曲线(Ⅳ),
联立(Ⅲ)(Ⅳ)得:,
即:,
△,
直线与双曲线有唯一公共点,
△,
△,
(舍或,
,
.
故答案为:.
【点睛】
此题考查的是反比例函数与一次函数的综合大题,掌握利用待定系数法求反比例函数解析式、一次函数解析式、旋转的性质、相似三角形的判定及性质是解决此题的关键.
安徽庐江县达标名校2022年中考数学全真模拟试卷含解析: 这是一份安徽庐江县达标名校2022年中考数学全真模拟试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,如图,将△ABC绕点C,计算等内容,欢迎下载使用。
2022年无锡市南长区重点达标名校中考联考数学试卷含解析: 这是一份2022年无锡市南长区重点达标名校中考联考数学试卷含解析,共18页。试卷主要包含了若分式有意义,则a的取值范围为等内容,欢迎下载使用。
2021-2022学年武汉市达标名校中考联考数学试卷含解析: 这是一份2021-2022学年武汉市达标名校中考联考数学试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。