2021-2022学年浙江省吴兴区七校联考中考数学考前最后一卷含解析
展开这是一份2021-2022学年浙江省吴兴区七校联考中考数学考前最后一卷含解析,共21页。试卷主要包含了若分式的值为零,则x的值是,近似数精确到,﹣的相反数是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.下列实数中,结果最大的是( )
A.|﹣3| B.﹣(﹣π) C. D.3
2.拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省斤,这些粮食可供9万人吃一年.“”这个数据用科学记数法表示为( )
A. B. C. D..
3.如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是( )
A.相切 B.相交 C.相离 D.无法确定
4.若分式的值为零,则x的值是( )
A.1 B. C. D.2
5.近似数精确到( )
A.十分位 B.个位 C.十位 D.百位
6.如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,则不等式的解集为( )
A.x>2 B.0<x<4
C.﹣1<x<4 D.x<﹣1 或 x>4
7.﹣的相反数是( )
A.8 B.﹣8 C. D.﹣
8.解分式方程 ,分以下四步,其中,错误的一步是( )
A.方程两边分式的最简公分母是(x﹣1)(x+1)
B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6
C.解这个整式方程,得x=1
D.原方程的解为x=1
9.二次函数y=x2+bx–1的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2–2x–1–t=0(t为实数)在–1
A.t≥–2 B.–2≤t<7
C.–2≤t<2 D.2
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.七巧板是我国祖先创造的一种智力玩具,它来源于勾股法,如图①整幅七巧板是由正方形ABCD分割成七小块(其中:五块等腰直角三角形、一块正方形和一块平行四边形)组成,如图②是由七巧板拼成的一个梯形,若正方形ABCD的边长为12cm,则梯形MNGH的周长是 cm(结果保留根号).
12.若xay与3x2yb是同类项,则ab的值为_____.
13.如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO沿x轴正方向作无滑动的翻滚,经第一次翻滚后得到△A1B1O,则翻滚2017次后AB中点M经过的路径长为______.
14.计算:-=________.
15.如图,已知点A是反比例函数的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为______.
16.如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则的长度为______.
三、解答题(共8题,共72分)
17.(8分)如图,在等腰△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D且BD=2AD,过点D作DE⊥AC交BA延长线于点E,垂足为点F.
(1)求tan∠ADF的值;
(2)证明:DE是⊙O的切线;
(3)若⊙O的半径R=5,求EF的长.
18.(8分)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.求该型号自行车的进价和标价分别是多少元?若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?
19.(8分)如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.
(1)求证:CE是⊙O的切线;
(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.
20.(8分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.
(1)甲、乙两种套房每套提升费用各多少万元?
(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?
(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?
21.(8分)如图,BD是矩形ABCD的一条对角线.
(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);
(2)求证:DE=BF.
22.(10分) 先化简,再求值: ,其中x是满足不等式﹣(x﹣1)≥的非负整数解.
23.(12分)如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA.求证:EF为半圆O的切线;若DA=DF=6,求阴影区域的面积.(结果保留根号和π)
24.如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.求二次函数y=ax2+2x+c的表达式;连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.
【详解】
根据实数比较大小的方法,可得
<|-3|=3<-(-π),
所以最大的数是:-(-π).
故选B.
【点睛】
此题主要考查了实数大小比较的方法,及判断无理数的范围,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
2、C
【解析】
用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.
【详解】
32400000=3.24×107元.
故选C.
【点睛】
此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.
3、B
【解析】
首先过点A作AM⊥BC,根据三角形面积求出AM的长,得出直线BC与DE的距离,进而得出直线与圆的位置关系.
【详解】
解:过点A作AM⊥BC于点M,交DE于点N,∴AM×BC=AC×AB,∴AM===2.1.
∵D、E分别是AC、AB的中点,∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2.
∵以DE为直径的圆半径为1.25,∴r=1.25>1.2,∴以DE为直径的圆与BC的位置关系是:相交.
故选B.
【点睛】
本题考查了直线和圆的位置关系,利用中位线定理得出BC到圆心的距离与半径的大小关系是解题的关键.
4、A
【解析】
试题解析:∵分式的值为零,
∴|x|﹣1=0,x+1≠0,
解得:x=1.
故选A.
5、C
【解析】
根据近似数的精确度:近似数5.0×102精确到十位.
故选C.
考点:近似数和有效数字
6、C
【解析】
看两函数交点坐标之间的图象所对应的自变量的取值即可.
【详解】
∵直线y1=kx+b与直线y2=mx+n分别交x轴于点A(﹣1,0),B(4,0),
∴不等式(kx+b)(mx+n)>0的解集为﹣1<x<4,
故选C.
【点睛】
本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
7、C
【解析】
互为相反数的两个数是指只有符号不同的两个数,所以的相反数是,
故选C.
8、D
【解析】
先去分母解方程,再检验即可得出.
【详解】
方程无解,虽然化简求得,但是将代入原方程中,可发现和的分母都为零,即无意义,所以,即方程无解
【点睛】
本题考查了分式方程的求解与检验,在分式方程中,一般求得的x值都需要进行检验
9、B
【解析】
利用对称性方程求出b得到抛物线解析式为y=x2﹣2x﹣1,则顶点坐标为(1,﹣2),再计算当﹣1<x<4时对应的函数值的范围为﹣2≤y<7,由于关于x的一元二次方程x2﹣2x﹣1﹣t=0(t为实数)在﹣1<x<4的范围内有实数解可看作二次函数y=x2﹣2x﹣1与直线y=t有交点,然后利用函数图象可得到t的范围.
【详解】
抛物线的对称轴为直线x=﹣=1,解得b=﹣2,
∴抛物线解析式为y=x2﹣2x﹣1,则顶点坐标为(1,﹣2),
当x=﹣1时,y=x2﹣2x﹣1=2;当x=4时,y=x2﹣2x﹣1=7,
当﹣1<x<4时,﹣2≤y<7,
而关于x的一元二次方程x2﹣2x﹣1﹣t=0(t为实数)在﹣1<x<4的范围内有实数解可看作二次函数y=x2﹣2x﹣1与直线y=t有交点,
∴﹣2≤t<7,
故选B.
【点睛】
本题考查了二次函数的性质、抛物线与x轴的交点、二次函数与一元二次方程,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解题的关键.
10、C
【解析】
根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.
【详解】
解:A、不是中心对称图形,是轴对称图形,故本选项错误;
B、既不是中心对称图形,也不是轴对称图形,故本选项错误;
C、既是中心对称图形又是轴对称图形,故本选项正确;
D、不是中心对称图形,是轴对称图形,故本选项错误.
故选C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、24+24
【解析】
仔细观察梯形从而发现其各边与原正方形各边之间的关系,则不难求得梯形的周长.
【详解】
解:观察图形得MH=GN=AD=12,HG=AC,
AD=DC=12,
AC=12,
HG=6.
梯形MNGH的周长=HG+HM+MN+NG=2HM+4HG=24+24.
故答案为24+24.
【点睛】
此题主要考查学生对等腰梯形的性质及正方形的性质的运用及观察分析图形的能力.
12、2
【解析】
试题解析:∵xay与3x2yb是同类项,
∴a=2,b=1,
则ab=2.
13、(+896)π.
【解析】
由圆弧的弧长公式及正△ABO翻滚的周期性可得出答案.
【详解】
解:如图
作⊥x轴于E, 易知OE=5, ,,
观察图象可知3三次一个循环,一个循环点M的运动路径为=
=,
翻滚2017次后AB中点M经过的路径长为,
故答案:
【点睛】
本题主要考查圆弧的弧长公式及三角形翻滚的周期性,熟悉并灵活运用各知识是解题的关键.
14、2
【解析】
试题解析:原式
故答案为
15、
【解析】
∵点A是反比例函数的图象上的一个动点,设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,
∴AC=n,OC=﹣m,∴∠ACO=∠ADO=90°,
∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,
在△ACO与△ODB中,∵∠ACO=∠ODB,∠CAO=∠BOD,AO=BO,
∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),
∵mn=﹣2,∴n(﹣m)=2,
∴点B所在图象的函数表达式为,
故答案为:.
16、
【解析】
试题解析:连接AE,
在Rt三角形ADE中,AE=4,AD=2,
∴∠DEA=30°,
∵AB∥CD,
∴∠EAB=∠DEA=30°,
∴的长度为:=.
考点:弧长的计算.
三、解答题(共8题,共72分)
17、(1);(2)见解析;(3)
【解析】
(1) AB是⊙O的直径,AB=AC,可得∠ADB=90°,∠ADF=∠B,可求得tan∠ADF的值;
(2)连接OD,由已知条件证明AC∥OD,又DE⊥AC,可得DE是⊙O的切线;
(3)由AF∥OD,可得△AFE∽△ODE,可得后求得EF的长.
【详解】
解:(1)∵AB是⊙O的直径,
∴∠ADB=90°,
∵AB=AC,
∴∠BAD=∠CAD,
∵DE⊥AC,
∴∠AFD=90°,
∴∠ADF=∠B,
∴tan∠ADF=tan∠B==;
(2)连接OD,
∵OD=OA,
∴∠ODA=∠OAD,
∵∠OAD=∠CAD,
∴∠CAD=∠ODA,
∴AC∥OD,
∵DE⊥AC,
∴OD⊥DE,
∴DE是⊙O的切线;
(3)设AD=x,则BD=2x,
∴AB=x=10,
∴x=2,
∴AD=2,
同理得:AF=2,DF=4,
∵AF∥OD,
∴△AFE∽△ODE,
∴,
∴=,
∴EF=.
【点睛】
本题考查切线的证明及圆与三角形相似的综合,为中考常考题型,需引起重视.
18、(1)进价为1000元,标价为1500元;(2)该型号自行车降价80元出售每月获利最大,最大利润是26460元.
【解析】
分析:(1)设进价为x元,则标价是1.5x元,根据关键语句:按标价九折销售该型号自行车8辆的利润是1.5x×0.9×8-8x,将标价直降100元销售7辆获利是(1.5x-100)×7-7x,根据利润相等可得方程1.5x×0.9×8-8x=(1.5x-100)×7-7x,再解方程即可得到进价,进而得到标价;
(2)设该型号自行车降价a元,利润为w元,利用销售量×每辆自行车的利润=总利润列出函数关系式,再利用配方法求最值即可.
详解:(1)设进价为x元,则标价是1.5x元,由题意得:
1.5x×0.9×8-8x=(1.5x-100)×7-7x,
解得:x=1000,
1.5×1000=1500(元),
答:进价为1000元,标价为1500元;
(2)设该型号自行车降价a元,利润为w元,由题意得:
w=(51+×3)(1500-1000-a),
=-(a-80)2+26460,
∵-<0,
∴当a=80时,w最大=26460,
答:该型号自行车降价80元出售每月获利最大,最大利润是26460元.
点睛:此题主要考查了二次函数的应用,以及元一次方程的应用,关键是正确理解题意,根据已知得出w与a的关系式,进而求出最值.
19、(1)证明见解析;(2)
【解析】
(1)连接OC,AC,可先证明AC平分∠BAE,结合圆的性质可证明OC∥AE,可得∠OCB=90°,可证得结论;
(2)可先证得四边形AOCD为平行四边形,再证明△OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案.
【详解】
(1)证明:连接OC,AC.
∵CF⊥AB,CE⊥AD,且CE=CF.
∴∠CAE=∠CAB.
∵OC=OA,
∴∠CAB=∠OCA.
∴∠CAE=∠OCA.
∴OC∥AE.
∴∠OCE+∠AEC=180°,
∵∠AEC=90°,
∴∠OCE=90°即OC⊥CE,
∵OC是⊙O的半径,点C为半径外端,
∴CE是⊙O的切线.
(2)解:∵AD=CD,
∴∠DAC=∠DCA=∠CAB,
∴DC∥AB,
∵∠CAE=∠OCA,
∴OC∥AD,
∴四边形AOCD是平行四边形,
∴OC=AD=a,AB=2a,
∵∠CAE=∠CAB,
∴CD=CB=a,
∴CB=OC=OB,
∴△OCB是等边三角形,
在Rt△CFB中,CF= ,
∴S四边形ABCD= (DC+AB)•CF=
【点睛】
本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.
20、(1)甲:25万元;乙:28万元;(2)三种方案;甲种套房提升50套,乙种套房提升30套费用最少;(3)当a=3时,三种方案的费用一样,都是2240万元;当a>3时,取m=48时费用最省;当0<a<3时,取m=50时费用最省.
【解析】
试题分析:(1)设甲种套房每套提升费用为x万元,根据题意建立方程求出其解即可;
(2)设甲种套房提升m套,那么乙种套房提升(80-m)套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m之间的函数关系式,根据一次函数的性质就可以求出结论;
(3)根据(2)表示出W与m之间的关系式,由一次函数的性质分类讨论就可以得出结论.
(1)设甲种套房每套提升费用为x万元,依题意,
得
解得:x=25
经检验:x=25符合题意,
x+3=28;
答:甲,乙两种套房每套提升费用分别为25万元,28万元.
(2)设甲种套房提升套,那么乙种套房提升(m-48)套,
依题意,得
解得:48≤m≤50
即m=48或49或50,所以有三种方案分别
是:方案一:甲种套房提升48套,乙种套房提升32套.
方案二:甲种套房提升49套,乙种套房提升1.
套方案三:甲种套房提升50套,乙种套房提升30套.
设提升两种套房所需要的费用为W.
所以当时,费用最少,即第三种方案费用最少.(3)在(2)的基础上有:
当a=3时,三种方案的费用一样,都是2240万元.
当a>3时,取m=48时费用W最省.
当0<a<3时,取m=50时费用最省.
考点: 1.一次函数的应用;2.分式方程的应用;3.一元一次不等式组的应用.
21、(1)作图见解析;(2)证明见解析;
【解析】
(1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;
(2)利用垂直平分线证得△DEO≌△BFO即可证得结论.
【详解】
解:(1)如图:
(2)∵四边形ABCD为矩形,
∴AD∥BC,
∴∠ADB=∠CBD,
∵EF垂直平分线段BD,
∴BO=DO,
在△DEO和三角形BFO中,
,
∴△DEO≌△BFO(ASA),
∴DE=BF.
考点:1.作图—基本作图;2.线段垂直平分线的性质;3.矩形的性质.
22、-
【解析】
【分析】先根据分式的运算法则进行化简,然后再求出不等式的非负整数解,最后把符合条件的x的值代入化简后的结果进行计算即可.
【详解】原式=,
=,
=,
∵﹣(x﹣1)≥,
∴x﹣1≤﹣1,
∴x≤0,非负整数解为0,
∴x=0,
当x=0时,原式=-.
【点睛】本题考查了分式的化简求值,解题的关键是熟练掌握分式的运算法则.
23、(1)证明见解析 (2)﹣6π
【解析】
(1)直接利用切线的判定方法结合圆心角定理分析得出OD⊥EF,即可得出答案;
(2)直接利用得出S△ACD=S△COD,再利用S阴影=S△AED﹣S扇形COD,求出答案.
【详解】
(1)证明:连接OD,
∵D为弧BC的中点,
∴∠CAD=∠BAD,
∵OA=OD,
∴∠BAD=∠ADO,
∴∠CAD=∠ADO,
∵DE⊥AC,
∴∠E=90°,
∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,
∴OD⊥EF,
∴EF为半圆O的切线;
(2)解:连接OC与CD,
∵DA=DF,
∴∠BAD=∠F,
∴∠BAD=∠F=∠CAD,
又∵∠BAD+∠CAD+∠F=90°,
∴∠F=30°,∠BAC=60°,
∵OC=OA,
∴△AOC为等边三角形,
∴∠AOC=60°,∠COB=120°,
∵OD⊥EF,∠F=30°,
∴∠DOF=60°,
在Rt△ODF中,DF=6,
∴OD=DF•tan30°=6,
在Rt△AED中,DA=6,∠CAD=30°,
∴DE=DA•sin30°=3,EA=DA•cos30°=9,
∵∠COD=180°﹣∠AOC﹣∠DOF=60°,
由CO=DO,
∴△COD是等边三角形,
∴∠OCD=60°,
∴∠DCO=∠AOC=60°,
∴CD∥AB,
故S△ACD=S△COD,
∴S阴影=S△AED﹣S扇形COD==.
【点睛】
此题主要考查了切线的判定,圆周角定理,等边三角形的判定与性质,解直角三角形及扇形面积求法等知识,得出S△ACD=S△COD是解题关键.
24、(1)y=﹣x2+2x+3(2)(,)(3)当点P的坐标为(,)时,四边形ACPB的最大面积值为
【解析】
(1)根据待定系数法,可得函数解析式;
(2)根据菱形的对角线互相垂直且平分,可得P点的纵坐标,根据自变量与函数值的对应关系,可得P点坐标;
(3)根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.
【详解】
(1)将点B和点C的坐标代入函数解析式,得
解得
二次函数的解析式为y=﹣x2+2x+3;
(2)若四边形POP′C为菱形,则点P在线段CO的垂直平分线上,
如图1,连接PP′,则PE⊥CO,垂足为E,
∵C(0,3),
∴
∴点P的纵坐标,
当时,即
解得(不合题意,舍),
∴点P的坐标为
(3)如图2,
P在抛物线上,设P(m,﹣m2+2m+3),
设直线BC的解析式为y=kx+b,
将点B和点C的坐标代入函数解析式,得
解得
直线BC的解析为y=﹣x+3,
设点Q的坐标为(m,﹣m+3),
PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.
当y=0时,﹣x2+2x+3=0,
解得x1=﹣1,x2=3,
OA=1,
S四边形ABPC=S△ABC+S△PCQ+S△PBQ
当m=时,四边形ABPC的面积最大.
当m=时,,即P点的坐标为
当点P的坐标为时,四边形ACPB的最大面积值为.
【点睛】
本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用菱形的性质得出P点的纵坐标,又利用了自变量与函数值的对应关系;解(3)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质.
相关试卷
这是一份2022届浙江省湖州市吴兴区达标名校中考考前最后一卷数学试卷含解析,共22页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。
这是一份2022届浙江省宁波北仑区东海实验校中考数学考前最后一卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,已知,下列运算正确的是,若a+|a|=0,则等于等内容,欢迎下载使用。
这是一份2022届湖州市吴兴区中考数学考前最后一卷含解析,共21页。试卷主要包含了下列说法正确的是,不等式﹣x+1>3的解集是等内容,欢迎下载使用。