2022届安徽合肥市市级名校中考数学考前最后一卷含解析
展开
这是一份2022届安徽合肥市市级名校中考数学考前最后一卷含解析,共19页。试卷主要包含了关于x的方程等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.下列各式计算正确的是( )
A. B. C. D.
2.如图,正方形ABCD的顶点C在正方形AEFG的边AE上,AB=2,AE=,则点G 到BE的距离是( )
A. B. C. D.
3.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是( ).
A. B. C. D.
4.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( )
A.平均数 B.中位数 C.众数 D.方差
5.已知xa=2,xb=3,则x3a﹣2b等于( )
A. B.﹣1 C.17 D.72
6.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是( )
A.x(x+1)=210 B.x(x﹣1)=210
C.2x(x﹣1)=210 D.x(x﹣1)=210
7.矩形具有而平行四边形不具有的性质是( )
A.对角相等 B.对角线互相平分
C.对角线相等 D.对边相等
8.将(x+3)2﹣(x﹣1)2分解因式的结果是( )
A.4(2x+2) B.8x+8 C.8(x+1) D. 4(x+1)
9.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )
A. B. C. D.
10.关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则( )
A.a≠±1 B.a=1 C.a=﹣1 D.a=±1
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,⊙O在△ABC三边上截得的弦长相等,∠A=70°,则∠BOC=_____度.
12.分解因式=________,=__________.
13.⊙O的半径为10cm,AB,CD是⊙O的两条弦,且AB∥CD,AB=16cm,CD=12cm.则AB与CD之间的距离是 cm.
14.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为_____.(结果保留π)
15.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为_____.
16.如图,中,,,,,平分,与相交于点,则的长等于_____.
三、解答题(共8题,共72分)
17.(8分)请根据图中提供的信息,回答下列问题:
(1)一个水瓶与一个水杯分别是多少元?
(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)
18.(8分)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.打折前甲、乙两种品牌粽子每盒分别为多少元?阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?
19.(8分)先化简,再求值:,其中x满足x2﹣x﹣1=1.
20.(8分)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.证明:△ADF是等腰三角形;若∠B=60°,BD=4,AD=2,求EC的长,
21.(8分)如图,儿童游乐场有一项射击游戏.从O处发射小球,将球投入正方形篮筐DABC.正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3).小球按照抛物线y=﹣x2+bx+c 飞行.小球落地点P 坐标(n,0)
(1)点C坐标为 ;
(2)求出小球飞行中最高点N的坐标(用含有n的代数式表示);
(3)验证:随着n的变化,抛物线的顶点在函数y=x2的图象上运动;
(4)若小球发射之后能够直接入篮,球没有接触篮筐,请直接写出n的取值范围.
22.(10分)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(﹣6,0)和点B(4,0),与y轴的交点为C(0,3).
(1)求抛物线的解析式;
(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上.
①是否同时存在点D和点P,使得△APQ和△CDO全等,若存在,求点D的坐标,若不存在,请说明理由;
②若∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.
23.(12分)已知:如图,平行四边形ABCD中,E、F分别是边BC和AD上的点,且BE=DF,求证:AE=CF
24. 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.
根据统计图的信息解决下列问题:
(1)本次调查的学生有多少人?
(2)补全上面的条形统计图;
(3)扇形统计图中C对应的中心角度数是 ;
(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
A选项中,∵不是同类二次根式,不能合并,∴本选项错误;
B选项中,∵,∴本选项正确;
C选项中,∵,而不是等于,∴本选项错误;
D选项中,∵,∴本选项错误;
故选B.
2、A
【解析】
根据平行线的判定,可得AB与GE的关系,根据平行线间的距离相等,可得△BEG与△AEG的关系,根据根据勾股定理,可得AH与BE的关系,再根据勾股定理,可得BE的长,根据三角形的面积公式,可得G到BE的距离.
【详解】
连接GB、GE,
由已知可知∠BAE=45°.
又∵GE为正方形AEFG的对角线,
∴∠AEG=45°.
∴AB∥GE.
∵AE=4,AB与GE间的距离相等,
∴GE=8,S△BEG=S△AEG=SAEFG=1.
过点B作BH⊥AE于点H,
∵AB=2,
∴BH=AH=.
∴HE=3.
∴BE=2.
设点G到BE的距离为h.
∴S△BEG=•BE•h=×2×h=1.
∴h=.
即点G到BE的距离为.
故选A.
【点睛】
本题主要考查了几何变换综合题.涉及正方形的性质,全等三角形的判定及性质,等积式及四点共圆周的知识,综合性强.解题的关键是运用等积式及四点共圆的判定及性质求解.
3、D
【解析】
根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.
【详解】
由DE∥BC,可得△ADE∽△ABC,并可得:
,,,故A,B,C正确;D错误;
故选D.
【点睛】
考点:1.平行线分线段成比例;2.相似三角形的判定与性质.
4、B
【解析】
总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.
【详解】
要想知道自己是否入选,老师只需公布第五名的成绩,
即中位数.
故选B.
5、A
【解析】
∵xa=2,xb=3,
∴x3a−2b=(xa)3÷(xb)2=8÷9= ,
故选A.
6、B
【解析】
设全组共有x名同学,那么每名同学送出的图书是(x−1)本;
则总共送出的图书为x(x−1);
又知实际互赠了210本图书,
则x(x−1)=210.
故选:B.
7、C
【解析】
试题分析:举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.
解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;
平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;
∴矩形具有而平行四边形不一定具有的性质是对角线相等,
故选C.
8、C
【解析】
直接利用平方差公式分解因式即可.
【详解】
(x+3)2−(x−1)2=[(x+3)+(x−1)][(x+3)−(x−1)]=4(2x+2)=8(x+1).
故选C.
【点睛】
此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.
9、B
【解析】
△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.
【详解】
解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,
当P点由B运动到C点时,即2<x<4时,y=×2×2=2,
符合题意的函数关系的图象是B;
故选B.
【点睛】
本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.
10、C
【解析】
根据一元一次方程的定义即可求出答案.
【详解】
由题意可知:,解得a=−1
故选C.
【点睛】
本题考查一元二次方程的定义,解题的关键是熟练运用一元二次方程的定义,本题属于基础题型.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、125
【解析】
解:过O作OM⊥AB,ON⊥AC,OP⊥BC,垂足分别为M,N,P
∵∠A=70°,∠B+∠C=180∘−∠A=110°
∵O在△ABC三边上截得的弦长相等,
∴OM=ON=OP,
∴O是∠B,∠C平分线的交点
∴∠BOC=180°−12(∠B+∠C)=180°−12×110°=125°.
故答案为:125°
【点睛】
本题考查了圆心角、弧、弦的关系, 三角形内角和定理, 角平分线的性质,解题的关键是掌握它们的性质和定理.
12、
【解析】
此题考查因式分解
答案
点评:利用提公因式、平方差公式、完全平方公式分解因式
13、2或14
【解析】
分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.
【详解】
①当弦AB和CD在圆心同侧时,如图,
∵AB=16cm,CD=12cm,
∴AE=8cm,CF=6cm,
∵OA=OC=10cm,
∴EO=6cm,OF=8cm,
∴EF=OF−OE=2cm;
②当弦AB和CD在圆心异侧时,如图,
∵AB=16cm,CD=12cm,
∴AF=8cm,CE=6cm,
∵OA=OC=10cm,
∴OF=6cm,OE=8cm,
∴EF=OF+OE=14cm.
∴AB与CD之间的距离为14cm或2cm.
故答案为:2或14.
14、πcm1.
【解析】
求出AD,先分别求出两个扇形的面积,再求出答案即可.
【详解】
解:∵AB长为15cm,贴纸部分的宽BD为15cm,
∴AD=10cm,
∴贴纸的面积为S=S扇形ABC﹣S扇形ADE=(cm1),
故答案为πcm1.
【点睛】
本题考查了扇形的面积计算,能熟记扇形的面积公式是解此题的关键.
15、﹣2
【解析】
要求函数的解析式只要求出B点的坐标就可以,过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到:=1,然后用待定系数法即可.
【详解】
过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.
设点A的坐标是(m,n),则AC=n,OC=m.
∵∠AOB=90°,
∴∠AOC+∠BOD=90°.
∵∠DBO+∠BOD=90°,
∴∠DBO=∠AOC.
∵∠BDO=∠ACO=90°,
∴△BDO∽△OCA.
∴,
∵OB=1OA,
∴BD=1m,OD=1n.
因为点A在反比例函数y=的图象上,
∴mn=1.
∵点B在反比例函数y=的图象上,
∴B点的坐标是(-1n,1m).
∴k=-1n•1m=-4mn=-2.
故答案为-2.
【点睛】
本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,利用相似三角形的性质求得点B的坐标(用含n的式子表示)是解题的关键.
16、3
【解析】
如图,延长CE、DE,分别交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等边三角形,根据等腰直角三角形的性质可知CG⊥AB,可求出AG的长,进而可得GH的长,根据含30°角的直角三角形的性质可求出EH的长,根据DE=DH-EH即可得答案.
【详解】
如图,延长CE、DE,分别交AB于G、H,
∵∠BAD=∠ADE=60°,
∴△ADH是等边三角形,
∴DH=AD=AH=5,∠DHA=60°,
∵AC=BC,CE平分∠ACB,∠ACB=90°,
∴AB==8,AG=AB=4,CG⊥AB,
∴GH=AH=AG=5-4=1,
∵∠DHA=60°,
∴∠GEH=30°,
∴EH=2GH=2
∴DE=DH-EH=5=2=3.
故答案为:3
【点睛】
本题考查等边三角形的判定及性质、等腰直角三角形的性质及含30°角的直角三角形的性质,熟记30°角所对的直角边等于斜边的一半的性质并正确作出辅助线是解题关键.
三、解答题(共8题,共72分)
17、(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.
【解析】
(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;
(2)计算出两商场得费用,比较即可得到结果.
【详解】
解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,
根据题意得:3x+4(48﹣x)=152,
解得:x=40,
则一个水瓶40元,一个水杯是8元;
(2)甲商场所需费用为(40×5+8n)×80%=160+6.4n
乙商场所需费用为5×40+(n﹣5×2)×8=120+8n
则∵n>10,且n为整数,
∴160+6.4n﹣(120+8n)=40﹣1.6n
讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,
∴选择乙商场购买更合算.
当n>25时,40﹣1.6n<0,即 160+0.64n<120+8n,
∴选择甲商场购买更合算.
【点睛】
此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.
18、(1)打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)打折后购买这批粽子比不打折节省了3120元.
【解析】
分析:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据“打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)根据节省钱数=原价购买所需钱数-打折后购买所需钱数,即可求出节省的钱数.
详解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,
根据题意得:
,
解得:.
答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.
(2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).
答:打折后购买这批粽子比不打折节省了3640元.
点睛:本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.
19、2.
【解析】
根据分式的运算法则进行计算化简,再将x2=x+2代入即可.
【详解】
解:原式=×
=×
=,
∵x2﹣x﹣2=2,
∴x2=x+2,
∴==2.
20、(1)见解析;(2)EC=1.
【解析】
(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90°,然后余角的性质可推出∠F=∠BDE,再根据对顶角相等进行等量代换即可推出∠F=∠FDA,于是得到结论;
(2)根据解直角三角形和等边三角形的性质即可得到结论.
【详解】
(1)∵AB=AC,
∴∠B=∠C,
∵FE⊥BC,
∴∠F+∠C=90°,∠BDE+∠B=90°,
∴∠F=∠BDE,
而∠BDE=∠FDA,
∴∠F=∠FDA,
∴AF=AD,
∴△ADF是等腰三角形;
(2)∵DE⊥BC,
∴∠DEB=90°,
∵∠B=60°,BD=1,
∴BE=BD=2,
∵AB=AC,
∴△ABC是等边三角形,
∴BC=AB=AD+BD=6,
∴EC=BC﹣BE=1.
【点睛】
本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出∠F=∠FDA,即可推出结论.
21、(1)(3,3);(2)顶点 N 坐标为(,);(3)详见解析;(4)<n< .
【解析】
(1)由正方形的性质及A、B、D三点的坐标求得AD=BC=1即可得;
(2)把(0,0)(n,0)代入y=-x2+bx+c求得b=n、c=0,据此可得函数解析式,配方成顶点式即可得出答案;
(3)将点N的坐标代入y=x2,看是否符合解析式即可;
(4)根据“小球发射之后能够直接入篮,球没有接触篮筐”知:当x=2时y>3,当x=3时y<2,据此列出关于n的不等式组,解之可得.
【详解】
(1)∵A(2,2),B(3,2),D(2,3),
∴AD=BC=1, 则点 C(3,3),
故答案为:(3,3);
(2)把(0,0)(n,0)代入 y=﹣x2+bx+c 得:
,
解得:,
∴抛物线解析式为 y=﹣x2+nx=﹣(x﹣)2+,
∴顶点 N 坐标为(,);
(3)由(2)把 x=代入 y=x2=()2= ,
∴抛物线的顶点在函数 y=x2的图象上运动;
(4)根据题意,得:当 x=2 时 y>3,当 x=3 时 y<2, 即,
解得:
相关试卷
这是一份2022年福建三明市市级名校中考数学考前最后一卷含解析,共19页。试卷主要包含了答题时请按要求用笔,下列运算结果正确的是,下列实数中,为无理数的是等内容,欢迎下载使用。
这是一份2022届浙江省仙居县市级名校中考数学考前最后一卷含解析,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份2022届云南省红河州市级名校中考数学考前最后一卷含解析,共20页。试卷主要包含了运用图形变化的方法研究下列问题等内容,欢迎下载使用。