2021-2022学年宁波市鄞州区中考数学考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.﹣2018的绝对值是( )
A.±2018 B.﹣2018 C.﹣ D.2018
2.如图,在⊙O中,点P是弦AB的中点,CD是过点P的直径,则下列结论:①AB⊥CD; ②∠AOB=4∠ACD;③弧AD=弧BD;④PO=PD,其中正确的个数是( )
A.4 B.1 C.2 D.3
3.在平面直角坐标系中,点(2,3)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是( )
A.30° B.60° C.30°或150° D.60°或120°
5.已知二次函数的图象如图所示,若,是这个函数图象上的三点,则的大小关系是( )
A. B. C. D.
6.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是( )
A.PD B.PB C.PE D.PC
7.在平面直角坐标系xOy中,若点P(3,4)在⊙O内,则⊙O的半径r的取值范围是( )
A.0<r<3 B.r>4 C.0<r<5 D.r>5
8.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是
A.平均数 B.中位数 C.众数 D.方差
9.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为( )
A.125° B.135° C.145° D.155°
10.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )
A.(﹣2,1) B.(﹣8,4)
C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若一个圆锥的侧面展开图是一个半径为6cm,圆心角为120°的扇形,则该圆锥的侧面面积为______cm(结果保留π).
12.如图,把△ABC绕点C顺时针旋转得到△A'B'C',此时A′B′⊥AC于D,已知∠A=50°,则∠B′CB的度数是_____°.
13.如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF=1,则S△ADF的值为_____.
14.分解因式a3﹣6a2+9a=_________________.
15.将数字37000000用科学记数法表示为_____.
16.某校体育室里有球类数量如下表:
球类
篮球
排球
足球
数量
3
5
4
如果随机拿出一个球(每一个球被拿出来的可能性是一样的),那么拿出一个球是足球的可能性是_____.
三、解答题(共8题,共72分)
17.(8分)如图,在直角坐标系xOy中,直线与双曲线相交于A(-1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.
求m、n的值;求直线AC的解析式.
18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西55°方向行驶4千米至B地,再沿北偏东35°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B、C两地的距离(结果保留整数)(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)
19.(8分)正方形ABCD的边长是10,点E是AB的中点,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.
(1)如图1,连接AB′.
①若△AEB′为等边三角形,则∠BEF等于多少度.
②在运动过程中,线段AB′与EF有何位置关系?请证明你的结论.
(2)如图2,连接CB′,求△CB′F周长的最小值.
(3)如图3,连接并延长BB′,交AC于点P,当BB′=6时,求PB′的长度.
20.(8分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.抽查D厂家的零件为 件,扇形统计图中D厂家对应的圆心角为 ;抽查C厂家的合格零件为 件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.
21.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.
(1)求证:DE是⊙O的切线;
(2)若AD=16,DE=10,求BC的长.
22.(10分)问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=1.点P是AC上的一个动点,过点P作MN⊥AC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上).设AP的长为x(0≤x≤4),△AMN的面积为y.
建立模型:(1)y与x的函数关系式为:,
解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象.请你补充列表,并在如图的坐标系中画出此函数的图象:
x
0
1
1
3
4
y
0
0
(3)观察所画的图象,写出该函数的两条性质: .
23.(12分)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:
(1)直线DC是⊙O的切线;
(2)AC2=2AD•AO.
24.综合与探究:
如图1,抛物线y=﹣x2+x+与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点.经过点A的直线l与y轴交于点D(0,﹣).
(1)求A、B两点的坐标及直线l的表达式;
(2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A′,连接FA′、BA′,设直线l的运动时间为t(t>0)秒.探究下列问题:
①请直接写出A′的坐标(用含字母t的式子表示);
②当点A′落在抛物线上时,求直线l的运动时间t的值,判断此时四边形A′BEF的形状,并说明理由;
(3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A′,B,E为顶点的四边形为矩形?若存在,请直接写出点P的坐标; 若不存在,请说明理由.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
分析:根据绝对值的定义解答即可,数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值.
详解:﹣2018的绝对值是2018,即.
故选D.
点睛:本题考查了绝对值的定义,熟练掌握绝对值的定义是解答本题的关键,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.
2、D
【解析】
根据垂径定理,圆周角的性质定理即可作出判断.
【详解】
∵P是弦AB的中点,CD是过点P的直径.
∴AB⊥CD,弧AD=弧BD,故①正确,③正确;
∠AOB=2∠AOD=4∠ACD,故②正确.
P是OD上的任意一点,因而④不一定正确.
故正确的是:①②③.
故选:D.
【点睛】
本题主要考查了垂径定理,圆周角定理,正确理解定理是关键.平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧;同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半.
3、A
【解析】
根据点所在象限的点的横纵坐标的符号特点,就可得出已知点所在的象限.
【详解】
解:点(2,3)所在的象限是第一象限.
故答案为:A
【点睛】
考核知识点:点的坐标与象限的关系.
4、D
【解析】
【分析】由图可知,OA=10,OD=1.根据特殊角的三角函数值求出∠AOB的度数,再根据圆周定理求出∠C的度数,再根据圆内接四边形的性质求出∠E的度数即可.
【详解】由图可知,OA=10,OD=1,
在Rt△OAD中,
∵OA=10,OD=1,AD==,
∴tan∠1=,∴∠1=60°,
同理可得∠2=60°,
∴∠AOB=∠1+∠2=60°+60°=120°,
∴∠C=60°,
∴∠E=180°-60°=120°,
即弦AB所对的圆周角的度数是60°或120°,
故选D.
【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.
5、A
【解析】
先求出二次函数的对称轴,结合二次函数的增减性即可判断.
【详解】
解:二次函数的对称轴为直线,
∵抛物线开口向下,
∴当时,y随x增大而增大,
∵,
∴
故答案为:A.
【点睛】
本题考查了根据自变量的大小,比较函数值的大小,解题的关键是熟悉二次函数的增减性.
6、C
【解析】
观察可得,点P在线段AC上由A到C的运动中,线段PE逐渐变短,当EP⊥AC时,PE最短,过垂直这个点后,PE又逐渐变长,当AP=m时,点P停止运动,符合图像的只有线段PE,故选C.
点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.
7、D
【解析】
先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r的范围.
【详解】
∵点P的坐标为(3,4),∴OP1.
∵点P(3,4)在⊙O内,∴OP<r,即r>1.
故选D.
【点睛】
本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.
8、D
【解析】
解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;
B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;
C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;
D.原来数据的方差==,
添加数字2后的方差==,
故方差发生了变化.
故选D.
9、A
【解析】
分析:如图求出∠5即可解决问题.
详解:
∵a∥b,
∴∠1=∠4=35°,
∵∠2=90°,
∴∠4+∠5=90°,
∴∠5=55°,
∴∠3=180°-∠5=125°,
故选:A.
点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.
10、D
【解析】
根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.
【详解】
∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为,把△ABO缩小,
∴点A的对应点A′的坐标是:(-2,1)或(2,-1).
故选D.
【点睛】
此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、12π
【解析】
根据圆锥的侧面展开图是扇形可得,
,∴该圆锥的侧面面积为:12π,
故答案为12π.
12、1
【解析】
由旋转的性质可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠ACA'=1°=∠B′CB.
【详解】
解:∵把△ABC绕点C顺时针旋转得到△A'B'C',
∴∠A=∠A'=50°,∠BCB'=∠ACA'
∵A'B'⊥AC
∴∠A'+∠ACA'=90°
∴∠ACA'=1°
∴∠BCB'=1°
故答案为:1.
【点睛】
本题考查了旋转的性质,熟练运用旋转的性质是本题的关键.
13、
【解析】
由3AE=2EB,和EF∥BC,证明△AEF∽△ABC,得=,结合S△AEF=1,可知再由==,得==,再根据S△ADF= S△ADC即可求解.
【详解】
解:∵3AE=2EB,
设AE=2a,BE=3a,
∵EF∥BC,
∴△AEF∽△ABC,
∴=()2=()2=,
∵S△AEF=1,
∴S△ABC=,
∵四边形ABCD为平行四边形,
∴
∵EF∥BC,
∴===,
∴==,
∴S△ADF= S△ADC=,
故答案是:
【点睛】
本题考查了图形的相似和平行线分线段成比例定理,中等难度,找到相似比是解题关键.
14、a(a﹣3)1 .
【解析】
a3﹣6a1+9a
=a(a1﹣6a+9)
=a(a﹣3)1.
故答案为a(a﹣3)1.
15、3.7×107
【解析】
根据科学记数法即可得到答案.
【详解】
数字37000000用科学记数法表示为3.7×107.
【点睛】
本题主要考查了科学记数法的基本概念,解本题的要点在于熟知科学记数法的相关知识.
16、
【解析】
先求出球的总数,再用足球数除以总数即为所求.
【详解】
解:一共有球3+5+4=12(个),其中足球有4个,
∴拿出一个球是足球的可能性=.
【点睛】
本题考查了概率,属于简单题,熟悉概率概念,列出式子是解题关键.
三、解答题(共8题,共72分)
17、(1)m=-1,n=-1;(2)y=-x+
【解析】
(1)由直线与双曲线相交于A(-1,a)、B两点可得B点横坐标为1,点C的坐标为(1,0),再根据△AOC的面积为1可求得点A的坐标,从而求得结果;
(2)设直线AC的解析式为y=kx+b,由图象过点A(-1,1)、C(1,0)根据待定系数法即可求的结果.
【详解】
(1)∵直线与双曲线相交于A(-1,a)、B两点,
∴B点横坐标为1,即C(1,0)
∵△AOC的面积为1,
∴A(-1,1)
将A(-1,1)代入,可得m=-1,n=-1;
(2)设直线AC的解析式为y=kx+b
∵y=kx+b经过点A(-1,1)、C(1,0)
∴解得k=-,b=.
∴直线AC的解析式为y=-x+.
【点睛】
本题考查了一次函数与反比例函数图象的交点问题,此类问题是初中数学的重点,在中考中极为常见,熟练掌握待定系数法是解题关键.
18、B、C两地的距离大约是6千米.
【解析】
过B作BD⊥AC于点D,在直角△ABD中利用三角函数求得BD的长,然后在直角△BCD中利用三角函数求得BC的长.
【详解】
解:过B作于点D.
在中,千米,
中,,
千米,
千米.
答:B、C两地的距离大约是6千米.
【点睛】
此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.
19、(1)①∠BEF=60°;②A B'∥EF,证明见解析;(2)△CB′F周长的最小值5+5;(3)PB′=.
【解析】
(1)①当△AEB′为等边三角形时,∠AE B′=60°,由折叠可得,∠BEF= ∠BE B′= ×120°=60°;②依据AE=B′E,可得∠EA B′=∠E B′A,再根据∠BEF=∠B′EF,即可得到∠BEF=∠BA B′,进而得出EF∥A B′;
(2)由折叠可得,CF+ B′F=CF+BF=BC=10,依据B′E+ B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,进而得到B′C最小值为5﹣5,故△CB′F周长的最小值=10+5﹣5=5+5;
(3)将△ABB′和△APB′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,设PB′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.依据∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的长度.
【详解】
(1)①当△AE B′为等边三角形时,∠AE B′=60°,
由折叠可得,∠BEF=∠BE B′=×120°=60°,
故答案为60;
②A B′∥EF,
证明:∵点E是AB的中点,
∴AE=BE,
由折叠可得BE=B′E,
∴AE=B′E,
∴∠EA B′=∠E B′A,
又∵∠BEF=∠B′EF,
∴∠BEF=∠BA B′,
∴EF∥A B′;
(2)如图,点B′的轨迹为半圆,由折叠可得,BF=B′F,
∴CF+ B′F=CF+BF=BC=10,
∵B′E+ B′C≥CE,
∴B′C≥CE﹣B′E=5﹣5,
∴B′C最小值为5﹣5,
∴△CB′F周长的最小值=10+5﹣5=5+5;
(3)如图,连接A B′,易得∠A B′B=90°,
将△AB B′和△AP B′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,
由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,
由AB=10,B B′=6,可得A B′=8,
∴QM=QN=A B′=8,
设P B′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.
∵∠BQP=90°,
∴22+(8﹣x)2=(6+x)2,
解得:x=,
∴P B′=x=.
【点睛】
本题属于四边形综合题,主要考查了折叠的性质,等边三角形的性质,正方形的判定与性质以及勾股定理的综合运用,解题的关键是设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
20、(1)500, 90°;(2)380;(3)合格率排在前两名的是C、D两个厂家;(4)P(选中C、D)=.
【解析】
试题分析:(1)计算出D厂的零件比例,则D厂的零件数=总数×所占比例,D厂家对应的圆心角为360°×所占比例;
(2)C厂的零件数=总数×所占比例;
(3)计算出各厂的合格率后,进一步比较得出答案即可;
(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.
试题解析:(1)D厂的零件比例=1-20%-20%-35%=25%,
D厂的零件数=2000×25%=500件;
D厂家对应的圆心角为360°×25%=90°;
(2)C厂的零件数=2000×20%=400件,
C厂的合格零件数=400×95%=380件,
如图:
(3)A厂家合格率=630÷(2000×35%)=90%,
B厂家合格率=370÷(2000×20%)=92.5%,
C厂家合格率=95%,
D厂家合格率470÷500=94%,
合格率排在前两名的是C、D两个厂家;
(4)根据题意画树形图如下:
共有12种情况,选中C、D的有2种,
则P(选中C、D)==.
考点:1.条形统计图;2.扇形统计图;3. 树状图法.
21、(1)证明见解析;(2)15.
【解析】
(1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.
(2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.
【详解】
(1)证明:连结OD,∵∠ACB=90°,
∴∠A+∠B=90°,
又∵OD=OB,
∴∠B=∠BDO,
∵∠ADE=∠A,
∴∠ADE+∠BDO=90°,
∴∠ODE=90°.
∴DE是⊙O的切线;
(2)连结CD,∵∠ADE=∠A,
∴AE=DE.
∵BC是⊙O的直径,∠ACB=90°.
∴EC是⊙O的切线.
∴DE=EC.
∴AE=EC,
又∵DE=10,
∴AC=2DE=20,
在Rt△ADC中,DC=
设BD=x,在Rt△BDC中,BC2=x2+122,
在Rt△ABC中,BC2=(x+16)2﹣202,
∴x2+122=(x+16)2﹣202,解得x=9,
∴BC=.
【点睛】
考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.
22、 (1) ①y=;②;(1)见解析;(3)见解析
【解析】
(1)根据线段相似的关系得出函数关系式(1)代入①中函数表达式即可填表(3)画图像,分析即可.
【详解】
(1)设AP=x
①当0≤x≤1时
∵MN∥BD
∴△APM∽△AOD
∴
∴MP=
∵AC垂直平分MN
∴PN=PM=x
∴MN=x
∴y=AP•MN=
②当1<x≤4时,P在线段OC上,
∴CP=4﹣x
∴△CPM∽△COD
∴
∴PM=
∴MN=1PM=4﹣x
∴y==﹣
∴y=
(1)由(1)
当x=1时,y=
当x=1时,y=1
当x=3时,y=
(3)根据(1)画出函数图象示意图可知
1、当0≤x≤1时,y随x的增大而增大
1、当1<x≤4时,y随x的增大而减小
【点睛】
本题考查函数,解题的关键是数形结合思想.
23、(1)证明见解析.(2)证明见解析.
【解析】
分析:(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;
(2)连接BC,证△DAC∽△CAB即可得.
详解:(1)如图,连接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∵AC平分∠DAB,
∴∠OAC=∠DAC,
∴∠DAC=∠OCA,
∴OC∥AD,
又∵AD⊥CD,
∴OC⊥DC,
∴DC是⊙O的切线;
(2)连接BC,
∵AB为⊙O的直径,
∴AB=2AO,∠ACB=90°,
∵AD⊥DC,
∴∠ADC=∠ACB=90°,
又∵∠DAC=∠CAB,
∴△DAC∽△CAB,
∴,即AC2=AB•AD,
∵AB=2AO,
∴AC2=2AD•AO.
点睛:本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质.
24、(1)A(﹣1,0),B(3,0),y=﹣x﹣;
(2)①A′(t﹣1, t);②A′BEF为菱形,见解析;
(3)存在,P点坐标为(,)或(,﹣).
【解析】
(1)通过解方程﹣x2+x+=0得A(−1,0),B(3,0),然后利用待定系数法确定直线l的解析式;
(2)①作A′H⊥x轴于H,如图2,利用OA=1,OD=得到∠OAD=60°,再利用平移和对称的性质得到EA=EA′=t,∠A′EF=∠AEF=60°,然后根据含30度的直角三角形三边的关系表示出A′H,EH即可得到A′的坐标;
②把A′(t−1,t)代入y=−x2+x+得−(t−1)2+(t−1)+=t,解方程得到t=2,此时A′点的坐标为(2,),E(1,0),然后通过计算得到AF=BE=2,A′F∥BE,从而判断四边形A′BEF为平行四边形,然后加上EF=BE可判定四边形A′BEF为菱形;
(3)讨论:当A′B⊥BE时,四边形A′BEP为矩形,利用点A′和点B的横坐标相同得到t−1=3,解方程求出t得到A′(3,),再利用矩形的性质可写出对应的P点坐标;当A′B⊥EA′,如图4,四边形A′BPE为矩形,作A′Q⊥x轴于Q,先确定此时A′点的坐标,然后利用点的平移确定对应P点坐标.
【详解】
(1)当y=0时,﹣x2+x+=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),
设直线l的解析式为y=kx+b,
把A(﹣1,0),D(0,﹣)代入得,解得,
∴直线l的解析式为y=﹣x﹣;
(2)①作A′H⊥x轴于H,如图,
∵OA=1,OD=,
∴∠OAD=60°,
∵EF∥AD,
∴∠AEF=60°,
∵点A 关于直线l的对称点为A′,
∴EA=EA′=t,∠A′EF=∠AEF=60°,
在Rt△A′EH中,EH=EA′=t,A′H=EH=t,
∴OH=OE+EH=t﹣1+t=t﹣1,
∴A′(t﹣1, t);
②把A′(t﹣1, t)代入y=﹣x2+x+得﹣(t﹣1)2+(t﹣1)+=t,
解得t1=0(舍去),t2=2,
∴当点A′落在抛物线上时,直线l的运动时间t的值为2;
此时四边形A′BEF为菱形,理由如下:
当t=2时,A′点的坐标为(2,),E(1,0),
∵∠OEF=60°
∴OF=OE=,EF=2OE=2,
∴F(0,),
∴A′F∥x轴,
∵A′F=BE=2,A′F∥BE,
∴四边形A′BEF为平行四边形,
而EF=BE=2,
∴四边形A′BEF为菱形;
(3)存在,如图:
当A′B⊥BE时,四边形A′BEP为矩形,则t﹣1=3,解得t=,则A′(3,),
∵OE=t﹣1=,
∴此时P点坐标为(,);
当A′B⊥EA′,如图,四边形A′BPE为矩形,作A′Q⊥x轴于Q,
∵∠AEA′=120°,
∴∠A′EB=60°,
∴∠EBA′=30°
∴BQ=A′Q=•t=t,
∴t﹣1+t=3,解得t=,
此时A′(1,),E(,0),
点A′向左平移个单位,向下平移个单位得到点E,则点B(3,0)向左平移个单位,向下平移个单位得到点P,则P(,﹣),
综上所述,满足条件的P点坐标为(,)或(,﹣).
【点睛】
本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、菱形的判定和矩形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质.
2022年宁波市鄞州区市级名校中考冲刺卷数学试题含解析: 这是一份2022年宁波市鄞州区市级名校中考冲刺卷数学试题含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,下列交通标志是中心对称图形的为等内容,欢迎下载使用。
2021-2022学年浙江省宁波市东钱湖九校中考数学考试模拟冲刺卷含解析: 这是一份2021-2022学年浙江省宁波市东钱湖九校中考数学考试模拟冲刺卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,二次函数y=3,解分式方程时,去分母后变形为等内容,欢迎下载使用。
2021-2022学年江西专版市级名校中考数学考试模拟冲刺卷含解析: 这是一份2021-2022学年江西专版市级名校中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了答题时请按要求用笔,一组数据,下列计算正确的是等内容,欢迎下载使用。