2021-2022学年宁波市鄞州区中考试题猜想数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.下列计算正确的是( )
A. B. C. D.
2.将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为( )
A.10cm B.30cm C.45cm D.300cm
3.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G,下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=S△CEF,其中正确的是( )
A.①③ B.②④ C.①③④ D.②③④
4.如图,是一个工件的三视图,则此工件的全面积是( )
A.60πcm2 B.90πcm2 C.96πcm2 D.120πcm2
5.在⊙O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为( )
A.3 B.4 C.5 D.6
6.在直角坐标系中,已知点P(3,4),现将点P作如下变换:①将点P先向左平移4个单位,再向下平移3个单位得到点P1;②作点P关于y轴的对称点P2;③将点P绕原点O按逆时针方向旋转90°得到点P3,则P1,P2,P3的坐标分别是( )
A.P1(0,0),P2(3,﹣4),P3(﹣4,3)
B.P1(﹣1,1),P2(﹣3,4),P3(4,3)
C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)
D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)
7.计算-3-1的结果是( )
A.2 B.-2 C.4 D.-4
8.下列运算正确的是( )
A.3a2﹣2a2=1 B.a2•a3=a6 C.(a﹣b)2=a2﹣b2 D.(a+b)2=a2+2ab+b2
9.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )
A.76° B.78° C.80° D.82°
10.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=( )
A.3 B.4 C.5 D.6
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在平面直角坐标系中有一正方形AOBC,反比例函数经过正方形AOBC对角线的交点,半径为()的圆内切于△ABC,则k的值为________.
12.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=________ .
13.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C,若∠ACB=30°,AB=,则阴影部分的面积是___.
14.关于的一元二次方程有两个相等的实数根,则的值等于_____.
15.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是___.
16.若两个关于 x,y 的二元一次方程组与有相同的解, 则 mn 的值为_____.
三、解答题(共8题,共72分)
17.(8分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C.
(1)求双曲线解析式;
(2)点P在x轴上,如果△ACP的面积为5,求点P的坐标.
18.(8分) 如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,且满足BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作FG的平行线,交DA的延长线于点N,连接NG.求证:BE=2CF;试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.
19.(8分)已知函数的图象与函数的图象交于点.
(1)若,求的值和点P的坐标;
(2)当时,结合函数图象,直接写出实数的取值范围.
20.(8分)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.
(1)求抛物线的解析式;
(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积最大,若存在,求出点F的坐标和最大值;若不存在,请说明理由;
(3)平行于DE的一条动直线l与直线BC相较于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求P点的坐标.
21.(8分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.
(1)甲、乙两种套房每套提升费用各多少万元?
(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?
22.(10分)如图1,□OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y= (x>0)的图象经过点B.
(1)求点B的坐标和反比例函数的关系式;
(2)如图2,将线段OA延长交y= (x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,①求直线BD的解析式;②求线段ED的长度.
23.(12分)如图,已知△ABC内接于,AB是直径,OD∥AC,AD=OC.
(1)求证:四边形OCAD是平行四边形;
(2)填空:①当∠B= 时,四边形OCAD是菱形;
②当∠B= 时,AD与相切.
24.如图,一次函数y=ax+b的图象与反比例函数的图象交于A,B两点,与X轴交于点C,与Y轴交于点D,已知,A(n,1),点B的坐标为(﹣2,m)
(1)求反比例函数的解析式和一次函数的解析式;
(2)连结BO,求△AOB的面积;
(3)观察图象直接写出一次函数的值大于反比例函数的值时x的取值范围是 .
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
原式各项计算得到结果,即可做出判断.
【详解】
A、原式=,正确;
B、原式不能合并,错误;
C、原式=,错误;
D、原式=2,错误.
故选A.
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
2、A
【解析】
根据已知得出直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形,再根据扇形弧长等于圆锥底面圆的周长即可得出答案。
【详解】
直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形
假设每个圆锥容器的地面半径为
解得
故答案选A.
【点睛】
本题考查扇形弧长的计算方法和扇形围成的圆锥底面圆的半径的计算方法。
3、C
【解析】
①通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,
②设BC=a,CE=y,由勾股定理就可以得出EF与x、y的关系,表示出BE与EF,即可判断BE+DF与EF关系不确定;
③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF为等边三角形,
④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和S△ABE,再通过比较大小就可以得出结论.
【详解】
①四边形ABCD是正方形,
∴AB═AD,∠B=∠D=90°.
在Rt△ABE和Rt△ADF中,
,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF
∵BC=CD,
∴BC-BE=CD-DF,即CE=CF,
∵AE=AF,
∴AC垂直平分EF.(故①正确).
②设BC=a,CE=y,
∴BE+DF=2(a-y)
EF=y,
∴BE+DF与EF关系不确定,只有当y=(2−)a时成立,(故②错误).
③当∠DAF=15°时,
∵Rt△ABE≌Rt△ADF,
∴∠DAF=∠BAE=15°,
∴∠EAF=90°-2×15°=60°,
又∵AE=AF
∴△AEF为等边三角形.(故③正确).
④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出:
(x+y)2+y2=(x)2
∴x2=2y(x+y)
∵S△CEF=x2,S△ABE=y(x+y),
∴S△ABE=S△CEF.(故④正确).
综上所述,正确的有①③④,
故选C.
【点睛】
本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.
4、C
【解析】
先根据三视图得到圆锥的底面圆的直径为12cm,高为8cm,再计算母线长为10,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形半径等于圆锥的母线长计算圆锥的侧面积和底面积的和即可.
【详解】
圆锥的底面圆的直径为12cm,高为8cm,
所以圆锥的母线长==10,
所以此工件的全面积=π×62+×2π×6×10=96π(cm2).
故答案选C.
【点睛】
本题考查的知识点是圆锥的面积及由三视图判断几何体,解题的关键是熟练的掌握圆锥的面积及由三视图判断几何体.
5、A
【解析】
解:作OC⊥AB于C,连结OA,如图.∵OC⊥AB,∴AC=BC=AB=×8=1.在Rt△AOC中,OA=5,∴OC=,即圆心O到AB的距离为2.故选A.
6、D
【解析】
把点P的横坐标减4,纵坐标减3可得P1的坐标;
让点P的纵坐标不变,横坐标为原料坐标的相反数可得P2的坐标;
让点P的纵坐标的相反数为P3的横坐标,横坐标为P3的纵坐标即可.
【详解】
∵点P(3,4),将点P先向左平移4个单位,再向下平移3个单位得到点P1,∴P1的坐标为(﹣1,1).
∵点P关于y轴的对称点是P2,∴P2(﹣3,4).
∵将点P绕原点O按逆时针方向旋转90°得到点P3,∴P3(﹣4,3).
故选D.
【点睛】
本题考查了坐标与图形的变化;用到的知识点为:左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,上加下减;两点关于y轴对称,纵坐标不变,横坐标互为相反数;(a,b)绕原点O按逆时针方向旋转90°得到的点的坐标为(﹣b,a).
7、D
【解析】试题解析:-3-1=-3+(-1)=-(3+1)=-1.
故选D.
8、D
【解析】
根据合并同类项法则,可知3a2﹣2a2= a2,故不正确;
根据同底数幂相乘,可知a2•a3=a5,故不正确;
根据完全平方公式,可知(a﹣b)2=a2﹣2ab+b2,故不正确;
根据完全平方公式,可知(a+b)2=a2+2ab+b2,正确.
故选D.
【详解】
请在此输入详解!
9、B
【解析】
如图,分别过K、H作AB的平行线MN和RS,
∵AB∥CD,
∴AB∥CD∥RS∥MN,
∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,
∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),
∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,
∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,
又∠BKC﹣∠BHC=27°,
∴∠BHC=∠BKC﹣27°,
∴∠BKC=180°﹣2(∠BKC﹣27°),
∴∠BKC=78°,
故选B.
10、D
【解析】
欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S1.
【详解】
∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,
则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,
∴S1+S1=4+4-1×1=2.
故选D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
试题解析:设正方形对角线交点为D,过点D作DM⊥AO于点M,DN⊥BO于点N;
设圆心为Q,切点为H、E,连接QH、QE.
∵在正方形AOBC中,反比例函数y=经过正方形AOBC对角线的交点,
∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,
QH⊥AC,QE⊥BC,∠ACB=90°,
∴四边形HQEC是正方形,
∵半径为(1-2)的圆内切于△ABC,
∴DO=CD,
∵HQ2+HC2=QC2,
∴2HQ2=QC2=2×(1-2)2,
∴QC2=18-32=(1-1)2,
∴QC=1-1,
∴CD=1-1+(1-2)=2,
∴DO=2,
∵NO2+DN2=DO2=(2)2=8,
∴2NO2=8,
∴NO2=1,
∴DN×NO=1,
即:xy=k=1.
【点睛】此题主要考查了正方形的性质以及三角形内切圆的性质以及待定系数法求反比例函数解析式,根据已知求出CD的长度,进而得出DN×NO=1是解决问题的关键.
12、40°
【解析】
连接CD,则∠ADC=∠ABC=50°,
∵AD是⊙O的直径,
∴∠ACD=90°,∴∠CAD+∠ADC=90°,∴∠CAD=90°-∠ADC=90°-50°=40°,故答案为: 40°.
13、﹣
【解析】
连接OB.
∵AB是⊙O切线,
∴OB⊥AB,
∵OC=OB,∠C=30°,
∴∠C=∠OBC=30°,
∴∠AOB=∠C+∠OBC=60°,
在Rt△ABO中,∵∠ABO=90°,AB=,∠A=30°,
∴OB=1,
∴S阴=S△ABO﹣S扇形OBD=×1×﹣ =﹣ .
14、
【解析】
分析:先根据根的判别式得到a-1=,把原式变形为,然后代入即可得出结果.
详解:由题意得:△= ,∴ ,∴,即a(a-1)=1, ∴a-1=,
故答案为-3.
点睛:本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac:当△>0, 方程有两个不相等的实数根;当△<0, 方程没有实数根;当△=0,方程有两个,相等的实数根,也考查了一元二次方程的定义.
15、12
【解析】
根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出线段长度解答.
【详解】
根据题意观察图象可得BC=5,点P在AC上运动时,BPAC时,BP有最小值,观察图象可得,BP的最小值为4,即BPAC时BP=4,又勾股定理求得CP=3,因点P从点C运动到点A,根据函数的对称性可得CP=AP=3,所以的面积是=12.
【点睛】
本题考查动点问题的函数图象,解题的关键是注意结合图象求出线段的长度,本题属于中等题型.
16、1
【解析】
联立不含m、n的方程求出x与y的值,代入求出m、n的值,即可求出所求式子的值.
【详解】
联立得:,
①×2+②,得:10x=20,
解得:x=2,
将x=2代入①,得:1-y=1,
解得:y=0,
则,
将x=2、y=0代入,得:,
解得:,
则mn=1,
故答案为1.
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
三、解答题(共8题,共72分)
17、(1);(2)(,0)或
【解析】
(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;
(2)设P(x,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于x的方程,解方程可求得P点的坐标.
【详解】
解:(1)把A(2,n)代入直线解析式得:n=3,
∴A(2,3),
把A坐标代入y=,得k=6,
则双曲线解析式为y=.
(2)对于直线y=x+2,
令y=0,得到x=-4,即C(-4,0).
设P(x,0),可得PC=|x+4|.
∵△ACP面积为5,
∴|x+4|•3=5,即|x+4|=2,
解得:x=-或x=-,
则P坐标为或.
18、(1)见解析;(2)四边形BFGN是菱形,理由见解析.
【解析】
(1)过F作FH⊥BE于点H,可证明四边形BCFH为矩形,可得到BH=CF,且H为BE中点,可得BE=2CF;
(2)由条件可证明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可证得四边形BFGN为菱形.
【详解】
(1)证明:过F作FH⊥BE于H点,
在四边形BHFC中,∠BHF=∠CBH=∠BCF=90°,
所以四边形BHFC为矩形,
∴CF=BH,
∵BF=EF,FH⊥BE,
∴H为BE中点,
∴BE=2BH,
∴BE=2CF;
(2)四边形BFGN是菱形.
证明:
∵将线段EF绕点F顺时针旋转90°得FG,
∴EF=GF,∠GFE=90°,
∴∠EFH+∠BFH+∠GFB=90°
∵BN∥FG,
∴∠NBF+∠GFB=180°,
∴∠NBA+∠ABC+∠CBF+∠GFB=180°,
∵∠ABC=90°,
∴∠NBA+∠CBF+∠GFB=180°−90°=90°,
由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,
∴∠EFH=90°−∠GFB−∠BFH=90°−∠GFB−∠CBF=∠NBA,
由BHFC是矩形可得HF=BC,
∵BC=AB,∴HF=AB,
在△ABN和△HFE中,,
∴△ABN≌△HFE,
∴NB=EF,
∵EF=GF,
∴NB=GF,
又∵NB∥GF,
∴NBFG是平行四边形,
∵EF=BF,∴NB=BF,
∴平行四边NBFG是菱形.
点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN≌△HFE是解题的关键.
19、(1),,或;(2) .
【解析】
【分析】(1)将P(m,n)代入y=kx,再结合m=2n即可求得k的值,联立y=与y=kx组成方程组,解方程组即可求得点P的坐标;
(2)画出两个函数的图象,观察函数的图象即可得.
【详解】(1)∵函数的图象交于点,
∴n=mk,
∵m=2n,∴n=2nk,
∴k=,
∴直线解析式为:y=x,
解方程组,得,,
∴交点P的坐标为:(,)或(-,-);
(2)由题意画出函数的图象与函数的图象如图所示,
∵函数的图象与函数的交点P的坐标为(m,n),
∴当k=1时,P的坐标为(1,1)或(-1,-1),此时|m|=|n|,
当k>1时,结合图象可知此时|m|<|n|,
∴当时,≥1.
【点睛】本题考查了反比例函数与正比例函数的交点,待定系数法等,运用数形结合思想解题是关键.
20、 (1)、y=-+x+4;(2)、不存在,理由见解析.
【解析】
试题分析:(1)、首先设抛物线的解析式为一般式,将点C和点A意见对称轴代入求出函数解析式;(2)、本题利用假设法来进行证明,假设存在这样的点,然后设出点F的坐标求出FH和FG的长度,然后得出面积与t的函数关系式,根据方程无解得出结论.
试题解析:(1)、∵抛物线y=a+bx+c(a≠0)过点C(0,4) ∴C=4①
∵-=1 ∴b=-2a② ∵抛物线过点A(-2,0) ∴4a-2b+c="0" ③
由①②③解得:a=-,b=1,c=4 ∴抛物线的解析式为:y=-+x+4
(2)、不存在 假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G. 设点F的坐标为(t,+t+4),其中0<t<4 则FH=+t+4 FG=t
∴△OBF的面积=OB·FH=×4×(+t+4)=-+2t+8 △OFC的面积=OC·FG=2t
∴四边形ABFC的面积=△AOC的面积+△OBF的面积+△OFC的面积=-+4t+12
令-+4t+12=17 即-+4t-5=0 △=16-20=-4<0 ∴方程无解
∴不存在满足条件的点F
考点:二次函数的应用
21、(1)甲、乙两种套房每套提升费用为25、1万元;(2)甲种套房提升2套,乙种套房提升30套时,y最小值为2090万元.
【解析】
(1)设甲种套房每套提升费用为x万元,根据题意建立方程求出其解即可;
(2)设甲种套房提升m套,那么乙种套房提升(80-m)套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m之间的函数关系式,根据一次函数的性质就可以求出结论.
【详解】
(1)设乙种套房提升费用为x万元,则甲种套房提升费用为(x﹣3)万元,
则,
解得x=1.
经检验:x=1是分式方程的解,
答:甲、乙两种套房每套提升费用为25、1万元;
(2)设甲种套房提升a套,则乙种套房提升(80﹣a)套,
则2090≤25a+1(80﹣a)≤2096,
解得48≤a≤2.
∴共3种方案,分别为:
方案一:甲种套房提升48套,乙种套房提升32套.
方案二:甲种套房提升49套,乙种套房提升31套,
方案三:甲种套房提升2套,乙种套房提升30套.
设提升两种套房所需要的费用为y万元,则
y=25a+1(80﹣a)=﹣3a+2240,
∵k=﹣3,
∴当a取最大值2时,即方案三:甲种套房提升2套,乙种套房提升30套时,y最小值为2090万元.
【点睛】
本题考查了一次函数的性质的运用,列分式方程解实际问题的运用,列一元一次不等式组解实际问题的运用.解答时建立方程求出甲,乙两种套房每套提升费用是关键,是解答第二问的必要过程.
22、(1)B(2,4),反比例函数的关系式为y=;(2)①直线BD的解析式为y=-x+6;②ED=2
【解析】
试题分析:(1)过点A作AP⊥x轴于点P,由平行四边形的性质可得BP=4, 可得B(2,4),把点B坐标代入反比例函数解析式中即可;
(2)①先求出直线OA的解析式,和反比例函数解析式联立,解方程组得到点D的坐标,再由待定系数法求得直线BD的解析式; ②先求得点E的坐标,过点D分别作x轴的垂线,垂足为G(4,0),由沟谷定理即可求得ED长度.
试题解析:(1)过点A作AP⊥x轴于点P,
则AP=1,OP=2,
又∵AB=OC=3,
∴B(2,4).,
∵反比例函数y= (x>0)的图象经过的B,
∴4=,
∴k=8.
∴反比例函数的关系式为y=;
(2)①由点A(2,1)可得直线OA的解析式为y=x.
解方程组,得,.
∵点D在第一象限,
∴D(4,2).
由B(2,4),点D(4,2)可得直线BD的解析式为y=-x+6;
②把y=0代入y=-x+6,解得x=6,
∴E(6,0),
过点D分别作x轴的垂线,垂足分别为G,则G(4,0),
由勾股定理可得:ED=.
点睛:本题考查一次函数、反比例函数、平行四边形等几何知识,综合性较强,要求学生有较强的分析问题和解决问题的能力.
23、(1)证明见解析;(2)① 30°,② 45°
【解析】
试题分析:(1)根据已知条件求得∠OAC=∠OCA,∠AOD=∠ADO,然后根据三角形内角和定理得出∠AOC=∠OAD,从而证得OC∥AD,即可证得结论;
(2)①若四边形OCAD是菱形,则OC=AC,从而证得OC=OA=AC,得出∠即可求得
②AD与相切,根据切线的性质得出根据AD∥OC,内错角相等得出从而求得
试题解析:(方法不唯一)
(1)∵OA=OC,AD=OC,
∴OA=AD,
∴∠OAC=∠OCA,∠AOD=∠ADO,
∵OD∥AC,
∴∠OAC=∠AOD,
∴∠OAC=∠OCA=∠AOD=∠ADO,
∴∠AOC=∠OAD,
∴OC∥AD,
∴四边形OCAD是平行四边形;
(2)①∵四边形OCAD是菱形,
∴OC=AC,
又∵OC=OA,
∴OC=OA=AC,
∴
∴
故答案为
②∵AD与相切,
∴
∵AD∥OC,
∴
∴
故答案为
24、(1)y=;y=x﹣;(2);(1)﹣2<x<0或x>1;
【解析】
(1)过A作AM⊥x轴于M,根据勾股定理求出OM,得出A的坐标,把A得知坐标代入反比例函数的解析式求出解析式,吧B的坐标代入求出B的坐标,吧A、B的坐标代入一次函数的解析式,即可求出解析式.
(2)求出直线AB交y轴的交点坐标,即可求出OD,根据三角形面积公式求出即可.
(1)根据A、B的横坐标结合图象即可得出答案.
【详解】
解:
(1)过A作AM⊥x轴于M,
则AM=1,OA=,由勾股定理得:OM=1,
即A的坐标是(1,1),
把A的坐标代入y=得:k=1,
即反比例函数的解析式是y=.
把B(﹣2,n)代入反比例函数的解析式得:n=﹣,
即B的坐标是(﹣2,﹣),
把A、B的坐标代入y=ax+b得:,
解得:k=.b=﹣,
即一次函数的解析式是y=x﹣.
(2)连接OB,
∵y=x﹣,
∴当x=0时,y=﹣,
即OD=,
∴△AOB的面积是S△BOD+S△AOD=××2+××1=.
(1)一次函数的值大于反比例函数的值时x的取值范围是﹣2<x<0或x>1,
故答案为﹣2<x<0或x>1.
【点睛】
本题考查了一次函数与反比例函数的交点问题以及用待定系数法求函数的解析式,函数的图象的应用.熟练掌握相关知识是解题关键.
2023年浙江省宁波市鄞州区中考一模数学试卷(含解析): 这是一份2023年浙江省宁波市鄞州区中考一模数学试卷(含解析),共26页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
浙江省宁波市明望中学2021-2022学年中考试题猜想数学试卷含解析: 这是一份浙江省宁波市明望中学2021-2022学年中考试题猜想数学试卷含解析,共21页。
宁波市鄞州区市级名校2021-2022学年中考数学五模试卷含解析: 这是一份宁波市鄞州区市级名校2021-2022学年中考数学五模试卷含解析,共25页。