|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年如皋八校联考中考数学押题试卷含解析
    立即下载
    加入资料篮
    2021-2022学年如皋八校联考中考数学押题试卷含解析01
    2021-2022学年如皋八校联考中考数学押题试卷含解析02
    2021-2022学年如皋八校联考中考数学押题试卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年如皋八校联考中考数学押题试卷含解析

    展开
    这是一份2021-2022学年如皋八校联考中考数学押题试卷含解析,共19页。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )

    A. B. C. D.
    2.一、单选题
    在某校“我的中国梦”演讲比赛中,有7名学生参加了决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这7名学生成绩的(  )
    A.平均数 B.众数 C.中位数 D.方差
    3.下列图形中,既是轴对称图形又是中心对称图形的有(  )

    A.1个 B.2个 C.3个 D.4个
    4.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是(  )

    A.10π B.15π C.20π D.30π
    5.如图,半径为的中,弦,所对的圆心角分别是,,若,,则弦的长等于( )

    A. B. C. D.
    6.如图,在△ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为(  )

    A.2 B.3 C.4 D.6
    7.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为(  )

    A.38° B.39° C.42° D.48°
    8.为了纪念物理学家费米,物理学界以费米(飞米)作为长度单位.已知1飞米等于0.000000000000001米,把0.000000000000001这个数用科学记数法表示为(  )
    A.1×10﹣15 B.0.1×10﹣14 C.0.01×10﹣13 D.0.01×10﹣12
    9.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是(  )

    A.①④⑤ B.①②④ C.①③④ D.①③⑤
    10.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为(  )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.当a<0,b>0时.化简:=_____.
    12.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长____cm.

    13.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起   分钟该容器内的水恰好放完.

    14.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 .
    15.观察下列一组数:,它们是按一定规律排列的,那么这一组数的第n个数是_____.
    16.如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为_____.

    三、解答题(共8题,共72分)
    17.(8分)如图,分别与相切于点,点在上,且,,垂足为.
    求证:;若的半径,,求的长
    18.(8分)小明和小亮为下周日计划了三项活动,分别是看电影(记为A)、去郊游(记为B)、去图书馆(记为C).他们各自在这三项活动中任选一个,每项活动被选中的可能性相同.
    (1)小明选择去郊游的概率为多少;
    (2)请用树状图或列表法求小明和小亮的选择结果相同的概率.
    19.(8分)2017年10月31日,在广州举行的世界城市日全球主场活动开幕式上,住建部公布许昌成为“国家生态园林城市”在2018年植树节到来之际,许昌某中学购买了甲、乙两种树木用于绿化校园.若购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元.
    (1)求甲种树和乙种树的单价;
    (2)按学校规划,准备购买甲、乙两种树共200棵,且甲种树的数量不少于乙种树的数量的,请设计出最省钱的购买方案,并说明理由.
    20.(8分)如图,抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3).
    (1)求该抛物线的解析式;
    (2)在抛物线的对称轴上是否存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形?若存在,试求出点Q的坐标;若不存在,请说明理由.

    21.(8分)已知:如图,在□ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD于点E、F,过点G的直线MN分别交边AD、BC于点M、N,且∠AGE=∠CGN.

    (1)求证:四边形ENFM为平行四边形;
    (2)当四边形ENFM为矩形时,求证:BE=BN.
    22.(10分)计算:(π﹣3.14)0+|﹣1|﹣2sin45°+(﹣1)1.
    23.(12分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.

    (1)求二次函数的表达式;
    (2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;
    (3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
    24.如果a2+2a-1=0,求代数式的值.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    试题分析:由题意可得,
    第一小组对应的圆心角度数是:×360°=72°,
    故选C.
    考点:1.扇形统计图;2.条形统计图.
    2、C
    【解析】
    由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.
    【详解】
    由于总共有7个人,且他们的成绩各不相同,第4的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.
    故选C.
    【点睛】
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    3、B
    【解析】
    解:第一个图是轴对称图形,又是中心对称图形;
    第二个图是轴对称图形,不是中心对称图形;
    第三个图是轴对称图形,又是中心对称图形;
    第四个图是轴对称图形,不是中心对称图形;
    既是轴对称图形,又是中心对称图形的有2个.故选B.
    4、B
    【解析】
    由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,
    ∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,
    ∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,
    ∴圆锥的侧面积=lr=×6π×5=15π,故选B
    5、A
    【解析】
    作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=BF=1,从而求解.
    解:作AH⊥BC于H,作直径CF,连结BF,如图,

    ∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,
    ∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,
    ∵AH⊥BC,∴CH=BH,
    ∵CA=AF,∴AH为△CBF的中位线,∴AH=BF=1.
    ∴,
    ∴BC=2BH=2.
    故选A.
    “点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.
    6、B
    【解析】
    根据三角形的中位线等于第三边的一半进行计算即可.
    【详解】
    ∵D、E分别是△ABC边AB、AC的中点,
    ∴DE是△ABC的中位线,
    ∵BC=6,
    ∴DE=BC=1.
    故选B.
    【点睛】
    本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.
    7、A
    【解析】
    分析:根据翻折的性质得出∠A=∠DOE,∠B=∠FOE,进而得出∠DOF=∠A+∠B,利用三角形内角和解答即可.
    详解:∵将△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,∴∠DOF=∠DOE+∠EOF=∠A+∠B=142°,∴∠C=180°﹣∠A﹣∠B=180°﹣142°=38°.
    故选A.
    点睛:本题考查了三角形内角和定理、翻折的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型.
    8、A
    【解析】
    根据科学记数法的表示方法解答.
    【详解】
    解:把这个数用科学记数法表示为.
    故选:.
    【点睛】
    此题重点考查学生对科学记数法的应用,熟练掌握小于0的数用科学记数法表示法是解题的关键.
    9、D
    【解析】
    根据题意,得到P、Q分别同时到达D、C可判断①②,分段讨论PQ位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P在DC上时,存在△BPQ与△BEA相似的可能性,分类讨论计算即可.
    【详解】
    解:由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4
    故①正确
    则AE=10﹣4=6
    t=10时,△BPQ的面积等于
    ∴AB=DC=8

    故②错误
    当14<t<22时,
    故③正确;
    分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线
    则⊙A、⊙B及AB垂直平分线与点P运行路径的交点是P,满足△ABP是等腰三角形
    此时,满足条件的点有4个,故④错误.
    ∵△BEA为直角三角形
    ∴只有点P在DC边上时,有△BPQ与△BEA相似
    由已知,PQ=22﹣t
    ∴当或时,△BPQ与△BEA相似
    分别将数值代入
    或,
    解得t=(舍去)或t=14.1
    故⑤正确
    故选:D.
    【点睛】
    本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角
    形判定,应用了分类讨论和数形结合的数学思想.
    10、A
    【解析】
    ∵在Rt△ABC中,∠C=90°,AB=4,AC=1,
    ∴BC== ,
    则cosB== ,
    故选A

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    分析:按照二次根式的相关运算法则和性质进行计算即可.
    详解:
    ∵,
    ∴.
    故答案为:.
    点睛:熟记二次根式的以下性质是解答本题的关键:(1);(2)=.
    12、13
    【解析】
    试题解析:因为正方形AECF的面积为50cm2,
    所以
    因为菱形ABCD的面积为120cm2,
    所以
    所以菱形的边长
    故答案为13.
    13、8。
    【解析】根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论:
    由函数图象得:进水管每分钟的进水量为:20÷4=5升。
    设出水管每分钟的出水量为a升,由函数图象,得,解得:。
    ∴关闭进水管后出水管放完水的时间为:(分钟)。
    14、.
    【解析】
    根据题意可知,掷一次骰子有6个可能结果,而点数为奇数的结果有3个,所以点数为奇数的概率为.
    考点:概率公式.
    15、
    【解析】
    试题解析:根据题意得,这一组数的第个数为:
    故答案为
    点睛:观察已知一组数发现:分子为从1开始的连续奇数,分母为从2开始的连续正整数的平方,写出第个数即可.
    16、
    【解析】
    设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF根据勾股定理列出关于x的方程即可解决问题.
    【详解】
    设CE=x.
    ∵四边形ABCD是矩形,
    ∴AD=BC=5,CD=AB=3,∠A=∠D=90°.
    ∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,
    ∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.
    在Rt△ABF中,由勾股定理得:
    AF2=52-32=16,
    ∴AF=4,DF=5-4=1.
    在Rt△DEF中,由勾股定理得:
    EF2=DE2+DF2,
    即x2=(3-x)2+12,
    解得:x=,
    故答案为.

    三、解答题(共8题,共72分)
    17、(1)见解析(2)5
    【解析】
    解:(1)证明:如图,连接,则.

    ∵,
    ∴.
    ∵,
    ∴四边形是平行四边形.
    ∴.
    (2)连接,则.
    ∵,,,
    ∴,.
    ∴.
    ∴.
    设,则.
    在中,有.
    ∴.即.
    18、(1);(2).
    【解析】
    (1)利用概率公式直接计算即可;
    (2)首先根据题意列表,然后求得所有等可能的结果与小明和小亮选择结果相同的情况,再利用概率公式即可求得答案
    【详解】
    (1)∵小明分别是从看电影(记为A)、去郊游(记为B)、去图书馆(记为C)的一个景点去游玩,
    ∴小明选择去郊游的概率=;
    (2)列表得:

    A
    B
    C
    A
    (A,A)
    (B,A)
    (C,A)
    B
    (A,B)
    (B,B)
    (C,B)
    C
    (A,C)
    (B,C)
    (C,C)
    由列表可知两人选择的方案共有9种等可能的结果,其中选择同种方案有3种,
    所以小明和小亮的选择结果相同的概率==.
    【点睛】
    此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    19、(1)甲种树的单价为50元/棵,乙种树的单价为40元/棵.(2)当购买1棵甲种树、133棵乙种树时,购买费用最低,理由见解析.
    【解析】
    (1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,根据“购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
    (2)设购买甲种树a棵,则购买乙种树(200-a)棵,根据甲种树的数量不少于乙种树的数量的可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由甲种树的单价比乙种树的单价贵,即可找出最省钱的购买方案.
    【详解】
    解:(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,
    根据题意得:

    解得:
    答:甲种树的单价为50元/棵,乙种树的单价为40元/棵.
    (2)设购买甲种树a棵,则购买乙种树(200﹣a)棵,
    根据题意得:
    解得:
    ∵a为整数,
    ∴a≥1.
    ∵甲种树的单价比乙种树的单价贵,
    ∴当购买1棵甲种树、133棵乙种树时,购买费用最低.
    【点睛】
    一元一次不等式的应用,二元一次方程组的应用,读懂题目,是解题的关键.
    20、 (1) y=﹣x2+2x+3;(2)见解析.
    【解析】
    (1)将B(3,0),C(0,3)代入抛物线y=ax2+2x+c,可以求得抛物线的解析式;
    (2) 抛物线的对称轴为直线x=1,设点Q的坐标为(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC为斜边,AQ为斜边,CQ时斜边三种情况求解即可.
    【详解】
    解:(1)∵抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3),
    ∴,得,
    ∴该抛物线的解析式为y=﹣x2+2x+3;
    (2)在抛物线的对称轴上存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形,
    理由:∵抛物线y=﹣x2+2x+3=﹣(x﹣1)2+4,点B(3,0),点C(0,3),
    ∴抛物线的对称轴为直线x=1,
    ∴点A的坐标为(﹣1,0),
    设点Q的坐标为(1,t),则
    AC2=OC2+OA2=32+12=10,
    AQ2=22+t2=4+t2,
    CQ2=12+(3﹣t)2=t2﹣6t+10,
    当AC为斜边时,
    10=4+t2+t2﹣6t+10,
    解得,t1=1或t2=2,
    ∴点Q的坐标为(1,1)或(1,2),
    当AQ为斜边时,
    4+t2=10+t2﹣6t+10,
    解得,t=,
    ∴点Q的坐标为(1,),
    当CQ时斜边时,
    t2﹣6t+10=4+t2+10,
    解得,t=,
    ∴点Q的坐标为(1,﹣),
    由上可得,当点Q的坐标是(1,1)、(1,2)、(1,)或(1,﹣)时,使得以A、C、Q为顶点的三角形为直角三角形.

    【点睛】
    本题考查了待定系数法求函数解析式,二次函数的图像与性质,勾股定理及分类讨论的数学思想,熟练掌握待定系数法是解(1)的关键,分三种情况讨论是解(2)的关键.
    21、(1)证明见解析;(2)证明见解析.
    【解析】
    分析:
    (1)由已知条件易得∠EAG=∠FCG,AG=GC结合∠AGE=∠FGC可得△EAG≌△FCG,从而可得△EAG≌△FCG,由此可得EG=FG,同理可得MG=NG,由此即可得到四边形ENFM是平行四边形;
    (2)如下图,由四边形ENFM为矩形可得EG=NG,结合AG=CG,∠AGE=∠CGN可得△EAG≌△NCG,则∠BAC=∠ACB ,AE=CN,从而可得AB=CB,由此可得BE=BN.
    详解:
    (1)∵四边形ABCD为平行四四边形边形,
    ∴AB//CD.
    ∴∠EAG=∠FCG.
    ∵点G为对角线AC的中点,
    ∴AG=GC.
    ∵∠AGE=∠FGC,
    ∴△EAG≌△FCG.
    ∴EG=FG.
    同理MG=NG.
    ∴四边形ENFM为平行四边形.
    (2)∵四边形ENFM为矩形,
    ∴EF=MN,且EG=,GN=,
    ∴EG=NG,
    又∵AG=CG,∠AGE=∠CGN,
    ∴△EAG≌△NCG,
    ∴∠BAC=∠ACB ,AE=CN,
    ∴AB=BC,
    ∴AB-AE=CB-CN,
    ∴BE=BN.

    点睛:本题是一道考查平行四边形的判定和性质及矩形性质的题目,熟练掌握相关图形的性质和判定是顺利解题的关键.
    22、
    【解析】
    直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质化简,进而求出答案.
    【详解】
    原式

    【点睛】
    考核知识点:三角函数混合运算.正确计算是关键.
    23、(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
    【解析】
    (1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;
    (2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;分别根据这三种情况求出点P的坐标;
    (3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化为顶点式,根据二次函数的性质即可得△MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
    【详解】
    解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,

    解得:b=﹣4,c=3,
    ∴二次函数的表达式为:y=x2﹣4x+3;
    (2)令y=0,则x2﹣4x+3=0,
    解得:x=1或x=3,
    ∴B(3,0),
    ∴BC=3,
    点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,
    ①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3
    ∴P1(0,3+3),P2(0,3﹣3);
    ②当PB=PC时,OP=OB=3,
    ∴P3(0,-3);
    ③当BP=BC时,
    ∵OC=OB=3
    ∴此时P与O重合,
    ∴P4(0,0);
    综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);

    (3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,
    ∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,
    当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.

    24、1
    【解析】

    ==1.
    故答案为1.

    相关试卷

    广西玉林玉州区七校联考2021-2022学年中考数学押题卷含解析: 这是一份广西玉林玉州区七校联考2021-2022学年中考数学押题卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,下列各数中是有理数的是,若点A,计算的结果为等内容,欢迎下载使用。

    2022年如皋八校联考中考三模数学试题含解析: 这是一份2022年如皋八校联考中考三模数学试题含解析,共21页。试卷主要包含了如图所示的几何体,它的左视图是,我市某一周的最高气温统计如下表,实数4的倒数是,已知a=等内容,欢迎下载使用。

    2021-2022学年山东省威海市文登区八校联考中考押题数学预测卷含解析: 这是一份2021-2022学年山东省威海市文登区八校联考中考押题数学预测卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,下列二次根式中,最简二次根式是,tan60°的值是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map