2021-2022学年山东省滨州市中考数学模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.定义运算“※”为:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.则函数y=2※x的图象大致是( )
A. B.
C. D.
2.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是( )
A.1 B.2 C.3 D.4
3.下列立体图形中,主视图是三角形的是( )
A. B. C. D.
4.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )
A. B. C. D
5.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是 ( )
A.A1(4,4),C1(3,2) B.A1(3,3),C1(2,1)
C.A1(4,3),C1(2,3) D.A1(3,4),C1(2,2)
6.某青年排球队12名队员年龄情况如下:
年龄 | 18 | 19 | 20 | 21 | 22 |
人数 | 1 | 4 | 3 | 2 | 2 |
则这12名队员年龄的众数、中位数分别是( )
A.20,19 B.19,19 C.19,20.5 D.19,20
7.已知方程组,那么x+y的值( )
A.-1 B.1 C.0 D.5
8.﹣的绝对值是( )
A.﹣ B.﹣ C. D.
9.等腰三角形的两边长分别为5和11,则它的周长为( )
A.21 B.21或27 C.27 D.25
10.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )
A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC
C.AB=CD,AD=BC D.∠DAB+∠BCD=180°
二、填空题(共7小题,每小题3分,满分21分)
11.我们知道方程组的解是,现给出另一个方程组,它的解是____.
12.分解因式: .
13.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表所示:
x | … | ﹣5 | ﹣4 | ﹣3 | ﹣2 | ﹣1 | … |
y | … | ﹣8 | ﹣3 | 0 | 1 | 0 | … |
当y<﹣3时,x的取值范围是_____.
14.将2.05×10﹣3用小数表示为__.
15.如图,在边长为1的正方形格点图中,B、D、E为格点,则∠BAC的正切值为_____.
16.分解因式:x2y﹣4xy+4y=_____.
17.二次根式中字母x的取值范围是_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,已知AB是圆O的直径,弦CD⊥AB,垂足H在半径OB上,AH=5,CD=,点E在弧AD上,射线AE与CD的延长线交于点F.
(1)求圆O的半径;
(2)如果AE=6,求EF的长.
19.(5分)高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(取1.732)
20.(8分)如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,
已知A(2,5).求:b和k的值;△OAB的面积.
21.(10分)如图,已知抛物线经过,两点,顶点为.
(1)求抛物线的解析式;
(2)将绕点顺时针旋转后,点落在点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;
(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.
22.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.
求反比例函数和一次函数的解析式;根据图象写出一次函数的值大于反比例函数的值的x的取值范围.
23.(12分)某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:
本次抽查的样本容量是 ;在扇形统计图中,“主动质疑”对应的圆心角为 度;将条形统计图补充完整;如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?
24.(14分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.求证:DE是⊙O的切线;当⊙O半径为3,CE=2时,求BD长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据定义运算“※” 为: a※b=,可得y=2※x的函数解析式,根据函数解析式,可得函数图象.
【详解】
解:y=2※x=,
当x>0时,图象是y=对称轴右侧的部分;
当x<0时,图象是y=对称轴左侧的部分,
所以C选项是正确的.
【点睛】
本题考查了二次函数的图象,利用定义运算“※”为: a※b=
得出分段函数是解题关键.
2、C
【解析】
试题解析:∵图象与x轴有两个交点,
∴方程ax2+bx+c=0有两个不相等的实数根,
∴b2﹣4ac>0,
∴4ac﹣b2<0,
①正确;
∵﹣=﹣1,
∴b=2a,
∵a+b+c<0,
∴b+b+c<0,3b+2c<0,
∴②是正确;
∵当x=﹣2时,y>0,
∴4a﹣2b+c>0,
∴4a+c>2b,
③错误;
∵由图象可知x=﹣1时该二次函数取得最大值,
∴a﹣b+c>am2+bm+c(m≠﹣1).
∴m(am+b)<a﹣b.故④正确
∴正确的有①②④三个,
故选C.
考点:二次函数图象与系数的关系.
【详解】
请在此输入详解!
3、A
【解析】
考查简单几何体的三视图.根据从正面看得到的图形是主视图,可得图形的主视图
【详解】
A、圆锥的主视图是三角形,符合题意;
B、球的主视图是圆,不符合题意;
C、圆柱的主视图是矩形,不符合题意;
D、正方体的主视图是正方形,不符合题意.
故选A.
【点睛】
主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看
4、D
【解析】
先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.
【详解】
由题意得,2x+y=10,
所以,y=-2x+10,
由三角形的三边关系得,,
解不等式①得,x>2.5,
解不等式②的,x<5,
所以,不等式组的解集是2.5<x<5,
正确反映y与x之间函数关系的图象是D选项图象.
故选:D.
5、A
【解析】
分析:根据B点的变化,确定平移的规律,将△ABC向右移5个单位、上移1个单位,然后确定A、C平移后的坐标即可.
详解:由点B(﹣4,1)的对应点B1的坐标是(1,2)知,需将△ABC向右移5个单位、上移1个单位,
则点A(﹣1,3)的对应点A1的坐标为(4,4)、点C(﹣2,1)的对应点C1的坐标为(3,2),
故选A.
点睛:此题主要考查了平面直角坐标系中的平移,关键是根据已知点的平移变化总结出平移的规律.
6、D
【解析】
先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.
【详解】
这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为=1.
故选D.
【点睛】
本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.
7、D
【解析】
解:,
①+②得:3(x+y)=15,
则x+y=5,
故选D
8、C
【解析】
根据负数的绝对值是它的相反数,可得答案.
【详解】
│-│=,A错误;
│-│=,B错误;││=,D错误;
││=,故选C.
【点睛】
本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题.
9、C
【解析】
试题分析:分类讨论:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长.
解:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;
当腰取11,则底边为5,则三角形的周长=11+11+5=1.
故选C.
考点:等腰三角形的性质;三角形三边关系.
10、D
【解析】
首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形为菱形.所以根据菱形的性质进行判断.
【详解】
解:
四边形是用两张等宽的纸条交叉重叠地放在一起而组成的图形,
,,
四边形是平行四边形(对边相互平行的四边形是平行四边形);
过点分别作,边上的高为,.则
(两纸条相同,纸条宽度相同);
平行四边形中,,即,
,即.故正确;
平行四边形为菱形(邻边相等的平行四边形是菱形).
,(菱形的对角相等),故正确;
,(平行四边形的对边相等),故正确;
如果四边形是矩形时,该等式成立.故不一定正确.
故选:.
【点睛】
本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
观察两个方程组的形式与联系,可得第二个方程组中,解之即可.
【详解】
解:由题意得,
解得.
故答案为:.
【点睛】
本题考查了二元一次方程组的解,用整体代入法解决这种问题比较方便.
12、.
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,
先提取公因式后继续应用平方差公式分解即可:.
考点:提公因式法和应用公式法因式分解.
13、x<﹣4或x>1
【解析】
观察表格求出抛物线的对称轴,确定开口方向,利用二次函数的对称性判断出x=1时,y=-3,然后写出y<-3时,x的取值范围即可.
【详解】
由表可知,二次函数的对称轴为直线x=-2,抛物线的开口向下,
且x=1时,y=-3,
所以,y<-3时,x的取值范围为x<-4或x>1.
故答案为x<-4或x>1.
【点睛】
本题考查了二次函数的性质,二次函数图象上点的坐标特征,观察图表得到y=-3时的另一个x的值是解题的关键.
14、0.1
【解析】试题解析:原式=2.05×10-3=0.1.
【点睛】本题考查了科学记数法-原数,用科学记数法表示的数还原成原数时,n>0时,n是几,小数点就向右移几位;n<0时,n是几,小数点就向左移几位.
15、
【解析】
根据圆周角定理可得∠BAC=∠BDC,然后求出tan∠BDC的值即可.
【详解】
由图可得,∠BAC=∠BDC,
∵⊙O在边长为1的网格格点上,
∴BE=3,DB=4,
则tan∠BDC==
∴tan∠BAC=
故答案为
【点睛】
本题考查的知识点是圆周角定理及其推论及解直角三角形,解题的关键是熟练的掌握圆周角定理及其推论及解直角三角形.
16、y(x-2)2
【解析】
先提取公因式y,再根据完全平方公式分解即可得.
【详解】
原式==,
故答案为.
17、x≤1
【解析】
二次根式有意义的条件就是被开方数是非负数,即可求解.
【详解】
根据题意得:1﹣x≥0,
解得x≤1.
故答案为:x≤1
【点睛】
主要考查了二次根式的意义和性质.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
三、解答题(共7小题,满分69分)
18、 (1) 圆的半径为4.5;(2) EF=.
【解析】
(1)连接OD,根据垂径定理得:DH=2,设圆O的半径为r,根据勾股定理列方程可得结论;
(2)过O作OG⊥AE于G,证明△AGO∽△AHF,列比例式可得AF的长,从而得EF的长.
【详解】
(1)连接OD,
∵直径AB⊥弦CD,CD=4,
∴DH=CH=CD=2,
在Rt△ODH中,AH=5,
设圆O的半径为r,
根据勾股定理得:OD2=(AH﹣OA)2+DH2,即r2=(5﹣r)2+20,
解得:r=4.5,
则圆的半径为4.5;
(2)过O作OG⊥AE于G,
∴AG=AE=×6=3,
∵∠A=∠A,∠AGO=∠AHF,
∴△AGO∽△AHF,
∴,
∴,
∴AF=,
∴EF=AF﹣AE=﹣6=.
【点睛】
本题考查了垂径定理,勾股定理,相似三角形的判定与性质,解答本题的关键是正确添加辅助线并熟练掌握垂径定理和相似三角形的判定与性质.
19、不需要改道行驶
【解析】
解:过点A作AH⊥CF交CF于点H,由图可知,
∵∠ACH=75°-15°=60°,
∴.
∵AH>100米,
∴消防车不需要改道行驶.
过点A作AH⊥CF交CF于点H,应用三角函数求出AH的长,大于100米,不需要改道行驶,不大于100米,需要改道行驶.
20、(1)b=3,k=10;(2)S△AOB=.
【解析】
(1)由直线y=x+b与双曲线y=相交于A、B两点,A(2,5),即可得到结论;
(2)过A作AD⊥x轴于D,BE⊥x轴于E,根据y=x+3,y=,得到(-5,-2),C(-3,0).求出OC=3,然后根据三角形的面积公式即可得到结论.
解:()把代入.∴∴.
把代入,∴,
∴.
()∵,.
∴时,,
∴,.∴.
又∵,
∴ .
21、(1)抛物线的解析式为.(2)平移后的抛物线解析式为:.(3)点的坐标为或.
【解析】
分析:(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;
(2)根据旋转的知识可得:A(1,0),B(0,2),∴OA=1,OB=2,
可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2-3x+1;
(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想.
详解: (1)已知抛物线经过,,
∴,解得,
∴所求抛物线的解析式为.
(2)∵,,∴,,
可得旋转后点的坐标为.
当时,由得,
可知抛物线过点.
∴将原抛物线沿轴向下平移1个单位长度后过点.
∴平移后的抛物线解析式为:.
(3)∵点在上,可设点坐标为,
将配方得,∴其对称轴为.由题得B1(0,1).
①当时,如图①,
∵,
∴,
∴,
此时,
∴点的坐标为.
②当时,如图②,
同理可得,
∴,
此时,
∴点的坐标为.
综上,点的坐标为或.
点睛:此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.
22、 (1)y=,y=−x−1;(2)x<−2或0<x<1
【解析】
(1)利用点A的坐标可求出反比例函数解析式,再把B(1,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;
(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数的值的x的取值范围.
【详解】
(1)∵A(−2,1)在反比例函数y=的图象上,
∴1=,解得m=−2.
∴反比例函数解析式为y=,
∵B(1,n)在反比例函数上,
∴n=−2,
∴B的坐标(1,−2),
把A(−2,1),B(1,−2)代入y=kx+b得
解得:
∴一次函数的解析式为y=−x−1;
(2)由图像知:当x<−2或0<x<1时,一次函数的值大于反比例函数的值.
【点睛】
本题考查了反比例函数与一次函数的交点问题,属于简单题,熟悉函数图像的性质是解题关键.
23、 (1)560;(2)54;(3)补图见解析;(4)18000人
【解析】
(1)本次调查的样本容量为224÷40%=560(人);
(2)“主动质疑”所在的扇形的圆心角的度数是:360∘×84560=54º;
(3)“讲解题目”的人数是:560−84−168−224=84(人).
(4)60000×=18000(人),
答:在课堂中能“独立思考”的学生约有18000人.
24、(1)证明见解析;(2)BD=2.
【解析】
(1)连接OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;
(2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出,从而求得BD•CD=AB•CE,由BD=CD,即可求得BD2=AB•CE,然后代入数据即可得到结果.
【详解】
(1)证明:连接OD,如图,
∵AB为⊙0的直径,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴AD平分BC,即DB=DC,
∵OA=OB,
∴OD为△ABC的中位线,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∴DE是⊙0的切线;
(2)∵∠B=∠C,∠CED=∠BDA=90°,
∴△DEC∽△ADB,
∴,
∴BD•CD=AB•CE,
∵BD=CD,
∴BD2=AB•CE,
∵⊙O半径为3,CE=2,
∴BD==2.
【点睛】
本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了等腰三角形的性质、三角形相似的判定和性质.
2024年山东省滨州市邹平市中考数学一模试卷(含解析): 这是一份2024年山东省滨州市邹平市中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山东省滨州市惠民县中考数学一模试卷(含解析): 这是一份2024年山东省滨州市惠民县中考数学一模试卷(含解析),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年山东省滨州市经开区中考数学三模试卷(含解析): 这是一份2023年山东省滨州市经开区中考数学三模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。