|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年山东省烟台龙口市市级名校中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    2021-2022学年山东省烟台龙口市市级名校中考适应性考试数学试题含解析01
    2021-2022学年山东省烟台龙口市市级名校中考适应性考试数学试题含解析02
    2021-2022学年山东省烟台龙口市市级名校中考适应性考试数学试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年山东省烟台龙口市市级名校中考适应性考试数学试题含解析

    展开
    这是一份2021-2022学年山东省烟台龙口市市级名校中考适应性考试数学试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,不等式﹣x+1>3的解集是,定义运算“※”为,下列计算,正确的是,将抛物线y=﹣,下列图案中,是轴对称图形的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请个队参赛,则满足的关系式为()
    A. B. C. D.
    2.的平方根是( )
    A.2 B. C.±2 D.±
    3.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示sinα的值,错误的是(  )

    A. B. C. D.
    4.不等式﹣x+1>3的解集是(  )
    A.x<﹣4 B.x>﹣4 C.x>4 D.x<4
    5.定义运算“※”为:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.则函数y=2※x的图象大致是(  )
    A. B.
    C. D.
    6.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么求时所列方程正确的是( )
    A. B.
    C. D.
    7.下列计算,正确的是(  )
    A. B.
    C.3 D.
    8.下列各类数中,与数轴上的点存在一一对应关系的是(  )
    A.有理数 B.实数 C.分数 D.整数
    9.将抛物线y=﹣(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为(  )
    A.向下平移3个单位 B.向上平移3个单位
    C.向左平移4个单位 D.向右平移4个单位
    10.下列图案中,是轴对称图形的是( )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.正方形EFGH的顶点在边长为3的正方形ABCD边上,若AE=x,正方形EFGH的面积为y,则y与x的函数关系式为______.

    12.已知二次函数与一次函数的图象相交于点,如图所示,则能使成立的x的取值范围是______.

    13.如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD﹣PC的最大值为_____.

    14.设[x)表示大于x的最小整数,如[3)=4,[−1.2)=−1,则下列结论中正确的是 ______ .(填写所有正确结论的序号)①[0)=0;②[x)−x的最小值是0;③[x)−x的最大值是0;④存在实数x,使[x)−x=0.5成立.
    15.如果x3nym+4与﹣3x6y2n是同类项,那么mn的值为_____.
    16.将一副三角尺如图所示叠放在一起,则的值是   .

    三、解答题(共8题,共72分)
    17.(8分)如图,一次函数y=ax+b的图象与反比例函数的图象交于A,B两点,与X轴交于点C,与Y轴交于点D,已知,A(n,1),点B的坐标为(﹣2,m)
    (1)求反比例函数的解析式和一次函数的解析式;
    (2)连结BO,求△AOB的面积;
    (3)观察图象直接写出一次函数的值大于反比例函数的值时x的取值范围是   .

    18.(8分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.求该抛物线的表达式;点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.
    ①当点P在直线BC的下方运动时,求△PBC的面积的最大值;
    ②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.

    19.(8分)观察下列各式:



    由此归纳出一般规律__________.
    20.(8分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.
    如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长.
    21.(8分)如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接AE、DE.
    求证:DE是⊙O的切线;设△CDE的面积为 S1,四边形ABED的面积为 S1.若 S1=5S1,求tan∠BAC的值;在(1)的条件下,若AE=3,求⊙O的半径长.
    22.(10分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:求y与x之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?

    23.(12分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.试判断DE与⊙O的位置关系,并说明理由;过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.

    24.解方程:



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    根据应用题的题目条件建立方程即可.
    【详解】
    解:由题可得:
    即:
    故答案是:A.
    【点睛】
    本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.
    2、D
    【解析】
    先化简,然后再根据平方根的定义求解即可.
    【详解】
    ∵=2,2的平方根是±,
    ∴的平方根是±.
    故选D.
    【点睛】
    本题考查了平方根的定义以及算术平方根,先把正确化简是解题的关键,本题比较容易出错.
    3、D
    【解析】
    【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.
    【详解】∵∠BDC=90°,∴∠B+∠BCD=90°,
    ∵∠ACB=90°,即∠BCD+∠ACD=90°,
    ∴∠ACD=∠B=α,
    A、在Rt△BCD中,sinα=,故A正确,不符合题意;
    B、在Rt△ABC中,sinα=,故B正确,不符合题意;
    C、在Rt△ACD中,sinα=,故C正确,不符合题意;
    D、在Rt△ACD中,cosα=,故D错误,符合题意,
    故选D.
    【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
    4、A
    【解析】
    根据一元一次不等式的解法,移项,合并同类项,系数化为1即可得解.
    【详解】
    移项得:−x>3−1,
    合并同类项得:−x>2,
    系数化为1得:x<-4.
    故选A.
    【点睛】
    本题考查了解一元一次不等式,解题的关键是熟练的掌握一元一次不等式的解法.
    5、C
    【解析】
    根据定义运算“※” 为: a※b=,可得y=2※x的函数解析式,根据函数解析式,可得函数图象.
    【详解】
    解:y=2※x=,
    当x>0时,图象是y=对称轴右侧的部分;
    当x<0时,图象是y=对称轴左侧的部分,
    所以C选项是正确的.
    【点睛】
    本题考查了二次函数的图象,利用定义运算“※”为: a※b=
    得出分段函数是解题关键.
    6、C
    【解析】
    本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.
    【详解】
    解:原计划用时为:,实际用时为:.
    所列方程为:,
    故选C.
    【点睛】
    本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
    7、B
    【解析】
    根据二次根式的加减法则,以及二次根式的性质逐项判断即可.
    【详解】
    解:∵=2,∴选项A不正确;
    ∵=2,∴选项B正确;
    ∵3﹣=2,∴选项C不正确;
    ∵+=3≠,∴选项D不正确.
    故选B.
    【点睛】
    本题主要考查了二次根式的加减法,以及二次根式的性质和化简,要熟练掌握,解答此题的关键是要明确:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.
    8、B
    【解析】
    根据实数与数轴上的点存在一一对应关系解答.
    【详解】
    实数与数轴上的点存在一一对应关系,
    故选:B.
    【点睛】
    本题考查了实数与数轴上点的关系,每一个实数都可以用数轴上唯一的点来表示,反过来,数轴上的每个点都表示一个唯一的实数,也就是说实数与数轴上的点一一对应.
    9、A
    【解析】
    将抛物线平移,使平移后所得抛物线经过原点,
    若左右平移n个单位得到,则平移后的解析式为:,将(0,0)代入后解得:n=-3或n=1,所以向左平移1个单位或向右平移3个单位后抛物线经过原点;
    若上下平移m个单位得到,则平移后的解析式为:,将(0,0)代入后解得:m=-3,所以向下平移3个单位后抛物线经过原点,
    故选A.
    10、B
    【解析】
    根据轴对称图形的定义,逐一进行判断.
    【详解】
    A、C是中心对称图形,但不是轴对称图形;B是轴对称图形;D不是对称图形.
    故选B.
    【点睛】
    本题考查的是轴对称图形的定义.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、y=2x2﹣6x+2
    【解析】
    由AAS证明△DHE≌△AEF,得出DE=AF=x,DH=AE=1-x,再根据勾股定理,求出EH2,即可得到y与x之间的函数关系式.
    【详解】
    如图所示:

    ∵四边形ABCD是边长为1的正方形,
    ∴∠A=∠D=20°,AD=1.
    ∴∠1+∠2=20°,
    ∵四边形EFGH为正方形,
    ∴∠HEF=20°,EH=EF.
    ∴∠1+∠1=20°,
    ∴∠2=∠1,
    在△AHE与△BEF中

    ∴△DHE≌△AEF(AAS),
    ∴DE=AF=x,DH=AE=1-x,
    在Rt△AHE中,由勾股定理得:
    EH2=DE2+DH2=x2+(1-x)2=2x2-6x+2;
    即y=2x2-6x+2(0<x<1),
    故答案为y=2x2-6x+2.
    【点睛】
    本题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题难度适中,求出y与x之间的函数关系式是解题的关键.
    12、x<-2或x>1
    【解析】
    试题分析:根据函数图象可得:当时,x<-2或x>1.
    考点:函数图象的性质
    13、1
    【解析】
    分析: 由PD−PC=PD−PG≤DG,当点P在DG的延长线上时,PD−PC的值最大,最大值为DG=1.
    详解: 在BC上取一点G,使得BG=1,如图,

    ∵,,
    ∴,
    ∵∠PBG=∠PBC,
    ∴△PBG∽△CBP,
    ∴,
    ∴PG=PC,
    当点P在DG的延长线上时,PD−PC的值最大,最大值为DG==1.
    故答案为1
    点睛: 本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.
    14、④
    【解析】
    根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.
    【详解】
    ①[0)=1,故本项错误;
    ②[x)−x>0,但是取不到0,故本项错误;
    ③[x)−x⩽1,即最大值为1,故本项错误;
    ④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.
    故答案是:④.
    【点睛】
    此题考查运算的定义,解题关键在于理解题意的运算法则.
    15、0
    【解析】
    根据同类项的特点,可知3n=6,解得n=2,m+4=2n,解得m=0,所以mn=0.
    故答案为0
    点睛:此题主要考查了同类项,解题关键是会判断同类项,注意:同类项中含有相同的字母,相同字母的指数相同.
    16、
    【解析】
    试题分析:∵∠BAC=∠ACD=90°,∴AB∥CD.
    ∴△ABE∽△DCE.∴.
    ∵在Rt△ACB中∠B=45°,∴AB=AC.
    ∵在RtACD中,∠D=30°,∴.
    ∴.

    三、解答题(共8题,共72分)
    17、(1)y=;y=x﹣;(2);(1)﹣2<x<0或x>1;
    【解析】
    (1)过A作AM⊥x轴于M,根据勾股定理求出OM,得出A的坐标,把A得知坐标代入反比例函数的解析式求出解析式,吧B的坐标代入求出B的坐标,吧A、B的坐标代入一次函数的解析式,即可求出解析式.
    (2)求出直线AB交y轴的交点坐标,即可求出OD,根据三角形面积公式求出即可.
    (1)根据A、B的横坐标结合图象即可得出答案.
    【详解】
    解:
    (1)过A作AM⊥x轴于M,
    则AM=1,OA=,由勾股定理得:OM=1,
    即A的坐标是(1,1),
    把A的坐标代入y=得:k=1,
    即反比例函数的解析式是y=.
    把B(﹣2,n)代入反比例函数的解析式得:n=﹣,
    即B的坐标是(﹣2,﹣),
    把A、B的坐标代入y=ax+b得:,
    解得:k=.b=﹣,
    即一次函数的解析式是y=x﹣.

    (2)连接OB,
    ∵y=x﹣,
    ∴当x=0时,y=﹣,
    即OD=,
    ∴△AOB的面积是S△BOD+S△AOD=××2+××1=.

    (1)一次函数的值大于反比例函数的值时x的取值范围是﹣2<x<0或x>1,
    故答案为﹣2<x<0或x>1.
    【点睛】
    本题考查了一次函数与反比例函数的交点问题以及用待定系数法求函数的解析式,函数的图象的应用.熟练掌握相关知识是解题关键.
    18、 (1)y=x2+6x+5;(2)①S△PBC的最大值为;②存在,点P的坐标为P(﹣,﹣)或(0,5).
    【解析】
    (1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;
    (2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;
    ②设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,求出 直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,、联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立⑤和y=x2+6x+5并解得:x=﹣,即可求出P点;当点P(P′)在直线BC上方时,根据∠PBC=∠BCD求出BP′∥CD,求出直线BP′的表达式为:y=2x+5,联立y=x2+6x+5和y=2x+5,求出x,即可求出P.
    【详解】
    解:(1)将点A、B坐标代入二次函数表达式得:,
    解得:,
    故抛物线的表达式为:y=x2+6x+5…①,
    令y=0,则x=﹣1或﹣5,
    即点C(﹣1,0);
    (2)①如图1,过点P作y轴的平行线交BC于点G,

    将点B、C的坐标代入一次函数表达式并解得:
    直线BC的表达式为:y=x+1…②,
    设点G(t,t+1),则点P(t,t2+6t+5),
    S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,
    ∵-<0,
    ∴S△PBC有最大值,当t=﹣时,其最大值为;
    ②设直线BP与CD交于点H,

    当点P在直线BC下方时,
    ∵∠PBC=∠BCD,
    ∴点H在BC的中垂线上,
    线段BC的中点坐标为(﹣,﹣),
    过该点与BC垂直的直线的k值为﹣1,
    设BC中垂线的表达式为:y=﹣x+m,将点(﹣,﹣)代入上式并解得:
    直线BC中垂线的表达式为:y=﹣x﹣4…③,
    同理直线CD的表达式为:y=2x+2…④,
    联立③④并解得:x=﹣2,即点H(﹣2,﹣2),
    同理可得直线BH的表达式为:y=x﹣1…⑤,
    联立①⑤并解得:x=﹣或﹣4(舍去﹣4),
    故点P(﹣,﹣);
    当点P(P′)在直线BC上方时,
    ∵∠PBC=∠BCD,∴BP′∥CD,
    则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,
    即直线BP′的表达式为:y=2x+5…⑥,
    联立①⑥并解得:x=0或﹣4(舍去﹣4),
    故点P(0,5);
    故点P的坐标为P(﹣,﹣)或(0,5).
    【点睛】
    本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.
    19、xn+1-1
    【解析】
    试题分析:观察其右边的结果:第一个是﹣1;第二个是﹣1;…依此类推,则第n个的结果即可求得.
    试题解析:(x﹣1)(++…x+1)=.
    故答案为.
    考点:平方差公式.
    20、(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,证明见解析;(3)4.
    【解析】
    (1)根据等腰三角形的性质以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.
    (2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出,从而得出△BDF∽△CED∽△DEF.
    (3)利用△DEF的面积等于△ABC的面积的,求出DH的长,从而利用S△DEF的值求出EF即可
    【详解】
    解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE.
    (2)△BDF∽△CED∽△DEF,证明如下:
    ∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,
    又∵∠EDF=∠B,
    ∴∠BFD=∠CDE.
    ∵AB=AC,
    ∴∠B=∠C.
    ∴△BDF∽△CED.
    ∴.
    ∵BD=CD,
    ∴,即.
    又∵∠C=∠EDF,
    ∴△CED∽△DEF.
    ∴△BDF∽△CED∽△DEF.
    (3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.

    ∵AB=AC,D是BC的中点,
    ∴AD⊥BC,BD=BC=1.
    在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,
    ∴AD=2.
    ∴S△ABC=•BC•AD=×3×2=42,
    S△DEF=S△ABC=×42=3.
    又∵•AD•BD=•AB•DH,
    ∴.
    ∵△BDF∽△DEF,
    ∴∠DFB=∠EFD.
    ∵DH⊥BF,DG⊥EF,
    ∴∠DHF=∠DGF.
    又∵DF=DF,
    ∴△DHF≌△DGF(AAS).
    ∴DH=DG=.
    ∵S△DEF=·EF·DG=·EF·=3,
    ∴EF=4.
    【点睛】
    本题考查了和相似有关的综合性题目,用到的知识点有三角形相似的判定和性质、等腰三角形的性质以及勾股定理的运用,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,要仔细观察图形、选择合适的判定方法,注意数形结合思想的运用.
    21、(1)见解析;(1)tan∠BAC=;(3)⊙O的半径=1.
    【解析】
    (1)连接DO,由圆周角定理就可以得出∠ADB=90°,可以得出∠CDB=90°,根据E为BC的中点可以得出DE=BE,就有∠EDB=∠EBD,OD=OB可以得出∠ODB=∠OBD,由等式的性质就可以得出∠ODE=90°就可以得出结论.
    (1)由S1=5 S1可得△ADB的面积是△CDE面积的4倍,可求得AD:CD=1:1,可得.则tan∠BAC的值可求;
    (3)由(1)的关系即可知,在Rt△AEB中,由勾股定理即可求AB的长,从而求⊙O的半径.
    【详解】
    解:(1)连接OD,

    ∴OD=OB
    ∴∠ODB=∠OBD.
    ∵AB是直径,
    ∴∠ADB=90°,
    ∴∠CDB=90°.
    ∵E为BC的中点,
    ∴DE=BE,
    ∴∠EDB=∠EBD,
    ∴∠ODB+∠EDB=∠OBD+∠EBD,
    即∠EDO=∠EBO.
    ∵BC是以AB为直径的⊙O的切线,
    ∴AB⊥BC,
    ∴∠EBO=90°,
    ∴∠ODE=90°,
    ∴DE是⊙O的切线;
    (1)∵S1=5 S1
    ∴S△ADB=1S△CDB

    ∵△BDC∽△ADB

    ∴DB1=AD•DC

    ∴tan∠BAC==.
    (3)∵tan∠BAC=
    ∴,得BC=AB
    ∵E为BC的中点
    ∴BE=AB
    ∵AE=3,
    ∴在Rt△AEB中,由勾股定理得
    ,解得AB=4
    故⊙O的半径R=AB=1.

    【点睛】
    本题考查了圆周角定理的运用,直角三角形的性质的运用,等腰三角形的性质的运用,切线的判定定理的运用,勾股定理的运用,相似三角形的判定和性质,解答时正确添加辅助线是关键.
    22、 (1)y=10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.
    【解析】
    (1)由待定系数法即可得到函数的解析式;
    (2)根据销售量×每千克利润=总利润列出方程求解即可;
    (3)根据销售量×每千克利润=总利润列出函数解析式求解即可.
    【详解】
    (1)设y与x之间的函数关系式为:y=kx+b,
    把(2,120)和(4,140)代入得,,
    解得:,
    ∴y与x之间的函数关系式为:y=10x+100;
    (2)根据题意得,(60﹣40﹣x)(10x+100)=2090,
    解得:x=1或x=9,
    ∵为了让顾客得到更大的实惠,
    ∴x=9,
    答:这种干果每千克应降价9元;
    (3)该干果每千克降价x元,商贸公司获得利润是w元,
    根据题意得,w=(60﹣40﹣x)(10x+100)=﹣10x2+100x+2000,
    ∴w=﹣10(x﹣5)2+2250,
    ∵a=-10,∴当x=5时,
    故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.
    【点睛】
    本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.
    23、(1)DE与⊙O相切,理由见解析;(2)阴影部分的面积为2π﹣.
    【解析】
    (1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;
    (2)利用勾股定理结合扇形面积求法分别分析得出答案.
    【详解】
    (1)DE与⊙O相切,
    理由:连接DO,

    ∵DO=BO,
    ∴∠ODB=∠OBD,
    ∵∠ABC的平分线交⊙O于点D,
    ∴∠EBD=∠DBO,
    ∴∠EBD=∠BDO,
    ∴DO∥BE,
    ∵DE⊥BC,
    ∴∠DEB=∠EDO=90°,
    ∴DE与⊙O相切;
    (2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,
    ∴DE=DF=3,
    ∵BE=3,
    ∴BD==6,
    ∵sin∠DBF=,
    ∴∠DBA=30°,
    ∴∠DOF=60°,
    ∴sin60°=,
    ∴DO=2,
    则FO=,
    故图中阴影部分的面积为:.
    【点睛】
    此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键.
    24、x=-4是方程的解
    【解析】
    分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】


    ∴x=-4,
    当x=-4时,
    ∴x=-4是方程的解
    【点睛】
    本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.

    相关试卷

    孝感市市级名校2021-2022学年中考适应性考试数学试题含解析: 这是一份孝感市市级名校2021-2022学年中考适应性考试数学试题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列代数运算正确的是,下列命题是真命题的是等内容,欢迎下载使用。

    2022年山东省烟台龙口市市级名校中考数学猜题卷含解析: 这是一份2022年山东省烟台龙口市市级名校中考数学猜题卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,一、单选题等内容,欢迎下载使用。

    2022年山东省烟台市龙口市达标名校中考数学适应性模拟试题含解析: 这是一份2022年山东省烟台市龙口市达标名校中考数学适应性模拟试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列方程中,是一元二次方程的是,在平面直角坐标系中,将点P等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map