2021-2022学年山东省临沂莒南县联考中考数学五模试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.解分式方程 ,分以下四步,其中,错误的一步是( )
A.方程两边分式的最简公分母是(x﹣1)(x+1)
B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6
C.解这个整式方程,得x=1
D.原方程的解为x=1
2.在下列条件中,能够判定一个四边形是平行四边形的是( )
A.一组对边平行,另一组对边相等
B.一组对边相等,一组对角相等
C.一组对边平行,一条对角线平分另一条对角线
D.一组对边相等,一条对角线平分另一条对角线
3.对于任意实数k,关于x的方程的根的情况为
A.有两个相等的实数根 B.没有实数根
C.有两个不相等的实数根 D.无法确定
4.如图,已知△ADE是△ABC绕点A逆时针旋转所得,其中点D在射线AC上,设旋转角为α,直线BC与直线DE交于点F,那么下列结论不正确的是( )
A.∠BAC=α B.∠DAE=α C.∠CFD=α D.∠FDC=α
5.如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是
A. B. C. D.
6. “龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是( )
A.赛跑中,兔子共休息了50分钟
B.乌龟在这次比赛中的平均速度是0.1米/分钟
C.兔子比乌龟早到达终点10分钟
D.乌龟追上兔子用了20分钟
7.在,,0,1这四个数中,最小的数是
A. B. C.0 D.1
8.已知一个多边形的内角和是外角和的3倍,则这个多边形是( )
A.五边形 B.六边形 C.七边形 D.八边形
9.如图,在△ABC中,EF∥BC,,S四边形BCFE=8,则S△ABC=( )
A.9 B.10 C.12 D.13
10.如图,在矩形ABCD中AB=,BC=1,将矩形ABCD绕顶点B旋转得到矩形A'BC'D,点A恰好落在矩形ABCD的边CD上,则AD扫过的部分(即阴影部分)面积为( )
A. B. C. D.
11.已知点A(1﹣2x,x﹣1)在第二象限,则x的取值范围在数轴上表示正确的是( )
A. B.
C. D.
12.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿 B-C-D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看作0),点P运动的路程为x,则y与x之间函数关系的图像大致为( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.2017年12月31日晚,郑东新区如意湖文化广场举行了“文化跨年夜、出彩郑州人”的跨年庆祝活动,大学生小明和小刚都各自前往观看了演出,而且他们两人前往时选择了以下三种交通工具中的一种:共享单车、公交、地铁,则他们两人选择同一种交通工具前往观看演出的概率为_____.
14.π﹣3的绝对值是_____.
15.已知线段AB=2cm,点C在线段AB上,且AC2=BC·AB,则AC的长___________cm.
16.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.
17.在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,1.则这位选手五次射击环数的方差为 .
18.如图,A、B是反比例函数y=(k>0)图象上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC=1.则k=_______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.当每件的销售价为52元时,该纪念品每天的销售数量为 件;当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.
20.(6分)已知:a是﹣2的相反数,b是﹣2的倒数,则
(1)a=_____,b=_____;
(2)求代数式a2b+ab的值.
21.(6分)在等边△ABC外侧作直线AM,点C关于AM的对称点为D,连接BD交AM于点E,连接CE,CD,AD.
(1)依题意补全图1,并求∠BEC的度数;
(2)如图2,当∠MAC=30°时,判断线段BE与DE之间的数量关系,并加以证明;
(3)若0°<∠MAC<120°,当线段DE=2BE时,直接写出∠MAC的度数.
22.(8分)如图,Rt△ABC的两直角边AC边长为4,BC边长为3,它的内切圆为⊙O,⊙O与边AB、BC、AC分别相切于点D、E、F,延长CO交斜边AB于点G.
(1)求⊙O的半径长;
(2)求线段DG的长.
23.(8分)某蔬菜加工公司先后两次收购某时令蔬菜200吨,第一批蔬菜价格为2000元/吨,因蔬菜大量上市,第二批收购时价格变为500元/吨,这两批蔬菜共用去16万元.
(1)求两批次购蔬菜各购进多少吨?
(2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润800元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?
24.(10分)如图,在△ABC中,∠ABC=90°.
(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)
(2)判断(1)中AC与⊙O的位置关系,直接写出结果.
25.(10分)如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0
(1)求点A、B、D的坐标;
(2)若△AOD与△BPC相似,求a的值;
(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.
26.(12分)平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1═(x>0)的图象上,点A′与点A关于点O对称,一次函数y2=mx+n的图象经过点A′.
(1)设a=2,点B(4,2)在函数y1、y2的图象上.
①分别求函数y1、y2的表达式;
②直接写出使y1>y2>0成立的x的范围;
(2)如图①,设函数y1、y2的图象相交于点B,点B的横坐标为3a,△AA'B的面积为16,求k的值;
(3)设m=,如图②,过点A作AD⊥x轴,与函数y2的图象相交于点D,以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.
27.(12分)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:EA⊥AF.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
先去分母解方程,再检验即可得出.
【详解】
方程无解,虽然化简求得,但是将代入原方程中,可发现和的分母都为零,即无意义,所以,即方程无解
【点睛】
本题考查了分式方程的求解与检验,在分式方程中,一般求得的x值都需要进行检验
2、C
【解析】
A、错误.这个四边形有可能是等腰梯形.
B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.
C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.
D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.
故选C.
3、C
【解析】
判断一元二次方程的根的情况,只要看根的判别式的值的符号即可:
∵a=1,b=,c=,
∴.
∴此方程有两个不相等的实数根.故选C.
4、D
【解析】
利用旋转不变性即可解决问题.
【详解】
∵△DAE是由△BAC旋转得到,
∴∠BAC=∠DAE=α,∠B=∠D,
∵∠ACB=∠DCF,
∴∠CFD=∠BAC=α,
故A,B,C正确,
故选D.
【点睛】
本题考查旋转的性质,解题的关键是熟练掌握旋转不变性解决问题,属于中考常考题型.
5、D
【解析】
【分析】根据二次函数的图象可以判断a、b、的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.
【详解】由二次函数的图象可知,
,,
当时,,
的图象经过二、三、四象限,
观察可得D选项的图象符合,
故选D.
【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.
6、D
【解析】
分析:根据图象得出相关信息,并对各选项一一进行判断即可.
详解:由图象可知,在赛跑中,兔子共休息了:50-10=40(分钟),故A选项错误;
乌龟跑500米用了50分钟,平均速度为:(米/分钟),故B选项错误;
兔子是用60分钟到达终点,乌龟是用50分钟到达终点,兔子比乌龟晚到达终点10分钟,故C选项错误;
在比赛20分钟时,乌龟和兔子都距起点200米,即乌龟追上兔子用了20分钟,故D选项正确.
故选D.
点睛:本题考查了从图象中获取信息的能力.正确识别图象、获取信息并进行判断是解题的关键.
7、A
【解析】
【分析】根据正数大于零,零大于负数,正数大于一切负数,即可得答案.
【详解】由正数大于零,零大于负数,得
,
最小的数是,
故选A.
【点睛】本题考查了有理数比较大小,利用好“正数大于零,零大于负数,两个负数绝对值大的反而小”是解题关键.
8、D
【解析】
根据多边形的外角和是360°,以及多边形的内角和定理即可求解.
【详解】
设多边形的边数是n,则
(n−2)⋅180=3×360,
解得:n=8.
故选D.
【点睛】
此题考查多边形内角与外角,解题关键在于掌握其定理.
9、A
【解析】
由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面积比等于相似比的平方,即可求得答案.
【详解】
∵,
∴.
又∵EF∥BC,
∴△AEF∽△ABC.
∴.
∴1S△AEF=S△ABC.
又∵S四边形BCFE=8,
∴1(S△ABC﹣8)=S△ABC,
解得:S△ABC=1.
故选A.
10、A
【解析】
本题首先利用A点恰好落在边CD上,可以求出A´C=BC´=1,又因为A´B=可以得出△A´BC为等腰直角三角形,即可以得出∠ABA´、∠DBD´的大小,然后将阴影部分利用切割法分为两个部分来求,即面积ADA´和面积DA´D´
【详解】
先连接BD,首先求得正方形ABCD的面积为,由分析可以求出∠ABA´=∠DBD´=45°,即可以求得扇形ABA´的面积为,扇形BDD´的面积为,面积ADA´=面积ABCD-面积A´BC-扇形面积ABA´=;面积DA´D´=扇形面积BDD´-面积DBA´-面积BA´D´=,阴影部分面积=面积DA´D´+面积ADA´=
【点睛】
熟练掌握面积的切割法和一些基本图形的面积的求法是本题解题的关键.
11、B
【解析】
先分别求出每一个不等式的解集,再根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
解:根据题意,得: ,
解不等式①,得:x>,
解不等式②,得:x>1,
∴不等式组的解集为x>1,
故选:B.
【点睛】
本题主要考查解一元一次不等式组,关键要掌握解一元一次不等式的方法,牢记确定不等式组解集方法.
12、C
【解析】
先分别求出点P从点B出发,沿B→C→D向终点D匀速运动时,当0<x≤2和2<x≤4时,y与x之间的函数关系式,即可得出函数的图象.
【详解】
由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则
当0<x≤2,y=x,
当2<x≤4,y=1,
由以上分析可知,这个分段函数的图象是C.
故选C.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
首先根据题意画树状图,然后根据树状图即可求得所有等可能的结果,最后用概率公式求解即可求得答案.
【详解】
树状图如图所示,
∴一共有9种等可能的结果;
根据树状图知,两人选择同一种交通工具前往观看演出的有3种情况,
∴选择同一种交通工具前往观看演出的概率:,
故答案为.
【点睛】
此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.
14、π﹣1.
【解析】
根据绝对值的性质即可解答.
【详解】
π﹣1的绝对值是π﹣1.
故答案为π﹣1.
【点睛】
本题考查了绝对值的性质,熟练运用绝对值的性质是解决问题的关键.
15、
【解析】
设AC=x,则BC=2-x,根据AC2=BC·AB列方程求解即可.
【详解】
解:设AC=x,则BC=2-x,根据AC2=BC·AB可得x2=2(2-x),
解得:x=或(舍去).
故答案为.
【点睛】
本题考查了黄金分割的应用,关键是明确黄金分割所涉及的线段的比.
16、15
【解析】
分析:设输出结果为y,观察图形我们可以得出x和y的关系式为:,将y的值代入即可求得x的值.
详解:∵
当y=127时, 解得:x=43;
当y=43时,解得:x=15;
当y=15时, 解得 不符合条件.
则输入的最小正整数是15.
故答案为15.
点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.
17、2.
【解析】
试题分析:五次射击的平均成绩为=(5+7+8+6+1)=7,
方差S2=[(5﹣7)2+(8﹣7)2+(7﹣7)2+(6﹣7)2+(1﹣7)2]=2.
考点:方差.
18、2
【解析】解:分别过点A、B作x轴的垂线,垂足分别为D、E.
则AD∥BE,AD=2BE=,
∴B、E分别是AC、DC的中点.
∴△ADC∽△BEC,
∵BE:AD=1:2,
∴EC:CD=1:2,
∴EC=DE=a,
∴OC=3a,
又∵A(a, ),B(2a, ),
∴S△AOC=AD×CO=×3a× ==1,
解得:k=2.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)180;(2)每件销售价为55元时,获得最大利润;最大利润为2250元.
【解析】
分析:(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;
(2)根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.
详解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),
故答案为180;
(2)由题意得:
y=(x﹣40)[200﹣10(x﹣50)]
=﹣10x2+1100x﹣28000
=﹣10(x﹣55)2+2250
∴每件销售价为55元时,获得最大利润;最大利润为2250元.
点睛:此题主要考查了二次函数的应用,根据已知得出二次函数的最值是中考中考查重点,同学们应重点掌握.
20、2 ﹣
【解析】
试题分析:利用相反数和倒数的定义即可得出.
先因式分解,再代入求出即可.
试题解析:是的相反数,是的倒数,
当时,
点睛:只有符号不同的两个数互为相反数.
乘积为的两个数互为倒数.
21、(1)补全图形如图1所示,见解析,∠BEC=60°;(2)BE=2DE,见解析;(3)∠MAC=90°.
【解析】
(1)根据轴对称作出图形,先判断出∠ABD=∠ADB=y,再利用三角形的内角和得出x+y即可得出结论;
(2)同(1)的方法判断出四边形ABCD是菱形,进而得出∠CBD=30°,进而得出∠BCD=90°,即可得出结论;
(3)先作出EF=2BE,进而判断出EF=CE,再判断出∠CBE=90°,进而得出∠BCE=30°,得出∠AEC=60°,即可得出结论.
【详解】
(1)补全图形如图1所示,
根据轴对称得,AD=AC,∠DAE=∠CAE=x,∠DEM=∠CEM.
∵△ABC是等边三角形,
∴AB=AC,∠BAC=60°.
∴AB=AD.
∴∠ABD=∠ADB=y.
在△ABD中,2x+2y+60°=180°,
∴x+y=60°.
∴∠DEM=∠CEM=x+y=60°.
∴∠BEC=60°;
(2)BE=2DE,
证明:∵△ABC是等边三角形,
∴AB=BC=AC,
由对称知,AD=AC,∠CAD=2∠CAM=60°,
∴△ACD是等边三角形,
∴CD=AD,
∴AB=BC=CD=AD,
∴四边形ABCD是菱形,且∠BAD=2∠CAD=120°,
∴∠ABC=60°,
∴∠ABD=∠DBC=30°,
由(1)知,∠BEC=60°,
∴∠ECB=90°.
∴BE=2CE.
∵CE=DE,
∴BE=2DE.
(3)如图3,(本身点C,A,D在同一条直线上,为了说明∠CBD=90°,画图时,没画在一条直线上)
延长EB至F使BE=BF,
∴EF=2BE,
由轴对称得,DE=CE,
∵DE=2BE,
∴CE=2BE,
∴EF=CE,
连接CF,同(1)的方法得,∠BEC=60°,
∴△CEF是等边三角形,
∵BE=BF,
∴∠CBE=90°,
∴∠BCE=30°,
∴∠ACE=30°,
∵∠AED=∠AEC,∠BEC=60°,
∴∠AEC=60°,
∴∠MAC=180°﹣∠AEC﹣∠ACE=90°.
【点睛】
此题是三角形综合题,主要考查了等边三角形的判定和性质,轴对称的性质,等腰三角形的性质,三角形的内角和定理,作出图形是解本题的关键.
22、 (1) 1;(2)
【解析】
(1)由勾股定理求AB,设⊙O的半径为r,则r=(AC+BC-AB)求解;
(2)过G作GP⊥AC,垂足为P,根据CG平分直角∠ACB可知△PCG为等腰直角三角形,设PG=PC=x,则CG=x,由(1)可知CO=r=,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.
试题解析:(1)在Rt△ABC中,由勾股定理得AB==5,
∴☉O的半径r=(AC+BC-AB)=(4+3-5)=1;
(2)过G作GP⊥AC,垂足为P,设GP=x,
由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,
∴GP=PC=x,
∵Rt△AGP∽Rt△ABC,
∴=,解得x=,
即GP=,CG=,
∴OG=CG-CO=-=,
在Rt△ODG中,DG==.
23、(1)第一次购进40吨,第二次购进160吨;(2)为获得最大利润,精加工数量应为150吨,最大利润是1.
【解析】
(1)设第一批购进蒜薹a吨,第二批购进蒜薹b吨.构建方程组即可解决问题.
(2)设精加工x吨,利润为w元,则粗加工(100-x)吨.利润w=800x+400(200﹣x)=400x+80000,再由x≤3(100-x),解得x≤150,即可解决问题.
【详解】
(1)设第一次购进a吨,第二次购进b吨,
,
解得 ,
答:第一次购进40吨,第二次购进160吨;
(2)设精加工x吨,利润为w元,
w=800x+400(200﹣x)=400x+80000,
∵x≤3(200﹣x),
解得,x≤150,
∴当x=150时,w取得最大值,此时w=1,
答:为获得最大利润,精加工数量应为150吨,最大利润是1.
【点睛】
本题考查了二元一次方程组的应用与一次函数的应用,解题的关键是熟练的掌握二元一次方程组的应用与一次函数的应用.
24、(1)见解析(2)相切
【解析】
(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即
可;
(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.
【详解】
(1)如图所示:
;
(2)相切;过O点作OD⊥AC于D点,
∵CO平分∠ACB,
∴OB=OD,即d=r,
∴⊙O与直线AC相切,
【点睛】
此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,
正确利用角平分线的性质求出d=r是解题关键.
25、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值为.(3)当a=时,D、O、C、B四点共圆.
【解析】
【分析】(1)根据二次函数的图象与x轴相交,则y=0,得出A(a,0),B(3,0),与y轴相交,则x=0,得出D(0,3a).
(2)根据(1)中A、B、D的坐标,得出抛物线对称轴x=,AO=a,OD=3a,代入求得顶点C(,-),从而得PB=3- =,PC=;再分情况讨论:①当△AOD∽△BPC时,根据相似三角形性质得, 解得:a= 3(舍去);
②△AOD∽△CPB,根据相似三角形性质得 ,解得:a1=3(舍),a2=;
(3)能;连接BD,取BD中点M,根据已知得D、B、O在以BD为直径,M(,a)为圆心的圆上,若点C也在此圆上,则MC=MB,根据两点间的距离公式得一个关于a的方程,解之即可得出答案.
【详解】(1)∵y=(x-a)(x-3)(0 ∴A(a,0),B(3,0),
当x=0时,y=3a,
∴D(0,3a);
(2)∵A(a,0),B(3,0),D(0,3a).∴对称轴x=,AO=a,OD=3a,
当x= 时,y=- ,
∴C(,-),
∴PB=3-=,PC=,
①当△AOD∽△BPC时,
∴,
即 ,
解得:a= 3(舍去);
②△AOD∽△CPB,
∴,
即 ,
解得:a1=3(舍),a2= .
综上所述:a的值为;
(3)能;连接BD,取BD中点M,
∵D、B、O三点共圆,且BD为直径,圆心为M(,a),
若点C也在此圆上,
∴MC=MB,
∴ ,
化简得:a4-14a2+45=0,
∴(a2-5)(a2-9)=0,
∴a2=5或a2=9,
∴a1=,a2=-,a3=3(舍),a4=-3(舍),
∵0 ∴a=,
∴当a=时,D、O、C、B四点共圆.
【点睛】本题考查了二次函数、相似三角形的性质、四点共圆等,综合性较强,有一定的难度,正确进行分析,熟练应用相关知识是解题的关键.
26、(1)y1=,y2=x﹣2;②2<x<4;(2)k=6;(3)证明见解析.
【解析】
分析:(1)由已知代入点坐标即可;
(2)面积问题可以转化为△AOB面积,用a、k表示面积问题可解;
(3)设出点A、A′坐标,依次表示AD、AF及点P坐标.
详解:(1)①由已知,点B(4,2)在y1═(x>0)的图象上
∴k=8
∴y1=
∵a=2
∴点A坐标为(2,4),A′坐标为(﹣2,﹣4)
把B(4,2),A(﹣2,﹣4)代入y2=mx+n得,
,
解得,
∴y2=x﹣2;
②当y1>y2>0时,y1=图象在y2=x﹣2图象上方,且两函数图象在x轴上方,
∴由图象得:2<x<4;
(2)分别过点A、B作AC⊥x轴于点C,BD⊥x轴于点D,连BO,
∵O为AA′中点,
S△AOB=S△AOA′=8
∵点A、B在双曲线上
∴S△AOC=S△BOD
∴S△AOB=S四边形ACDB=8
由已知点A、B坐标都表示为(a,)(3a,)
∴,
解得k=6;
(3)由已知A(a,),则A′为(﹣a,﹣).
把A′代入到y=,得:﹣,
∴n=,
∴A′B解析式为y=﹣.
当x=a时,点D纵坐标为,
∴AD=
∵AD=AF,
∴点F和点P横坐标为,
∴点P纵坐标为.
∴点P在y1═(x>0)的图象上.
点睛:本题综合考查反比例函数、一次函数图象及其性质,解答过程中,涉及到了面积转化方法、待定系数法和数形结合思想.
27、见解析
【解析】
根据条件可以得出AD=AB,∠ABF=∠ADE=90°,从而可以得出△ABF≌△ADE,就可以得出∠FAB=∠EAD,就可以得出结论.
【详解】
证明:∵四边形ABCD是正方形,
∴AB=AD,∠ABC=∠D=∠BAD=90°,
∴∠ABF=90°.
∵在△BAF和△DAE中,
,
∴△BAF≌△DAE(SAS),
∴∠FAB=∠EAD,
∵∠EAD+∠BAE=90°,
∴∠FAB+∠BAE=90°,
∴∠FAE=90°,
∴EA⊥AF.
2024年山东省临沂市莒南县中考数学一模试卷(含解析): 这是一份2024年山东省临沂市莒南县中考数学一模试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年山东省临沂市莒南县中考数学二模试卷(含解析): 这是一份2023年山东省临沂市莒南县中考数学二模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年山东省临沂市莒南县中考数学一模试卷+: 这是一份2023年山东省临沂市莒南县中考数学一模试卷+,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。