终身会员
搜索
    上传资料 赚现金

    2021-2022学年山东省青岛大附属中学中考二模数学试题含解析

    立即下载
    加入资料篮
    2021-2022学年山东省青岛大附属中学中考二模数学试题含解析第1页
    2021-2022学年山东省青岛大附属中学中考二模数学试题含解析第2页
    2021-2022学年山东省青岛大附属中学中考二模数学试题含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年山东省青岛大附属中学中考二模数学试题含解析

    展开

    这是一份2021-2022学年山东省青岛大附属中学中考二模数学试题含解析,共20页。试卷主要包含了不等式3x<2等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,数轴上的三点所表示的数分别为,其中,如果|那么该数轴的原点的位置应该在( )

    A.点的左边 B.点与点之间 C.点与点之间 D.点的右边
    2.一元二次方程4x2﹣2x+=0的根的情况是( )
    A.有两个不相等的实数根 B.有两个相等的实数根
    C.没有实数根 D.无法判断
    3.若一次函数的图像过第一、三、四象限,则函数( )
    A.有最大值 B.有最大值 C.有最小值 D.有最小值
    4.图中三视图对应的正三棱柱是( )

    A. B. C. D.
    5.如图,中,,,将绕点逆时针旋转得到,使得,延长交于点,则线段的长为( )

    A.4 B.5 C.6 D.7
    6.不等式3x<2(x+2)的解是(  )
    A.x>2 B.x<2 C.x>4 D.x<4
    7.如果关于x的方程没有实数根,那么c在2、1、0、中取值是( )
    A.; B.; C.; D..
    8.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是(  )

    A.三亚﹣﹣永兴岛 B.永兴岛﹣﹣黄岩岛
    C.黄岩岛﹣﹣弹丸礁 D.渚碧礁﹣﹣曾母暗山
    9.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为( )

    A.90° B.60° C.45° D.30°
    10.正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为(  )
    A.30° B.60° C.120° D.180°
    11.如图,等腰△ABC的底边BC与底边上的高AD相等,高AD在数轴上,其中点A,D分别对应数轴上的实数﹣2,2,则AC的长度为(  )

    A.2 B.4 C.2 D.4
    12.如图,正方形ABCD内接于圆O,AB=4,则图中阴影部分的面积是( )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.圆柱的底面半径为1,母线长为2,则它的侧面积为_____.(结果保留π)
    14.为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育锻炼情况绘制成了如图所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为_____.

    15.在△ABC中,∠BAC=45°,∠ACB=75°,分别以A、C为圆心,以大于AC的长为半径画弧,两弧交于F、G作直线FG,分别交AB,AC于点D、E,若AC的长为4,则BC的长为_____.

    16.若2x+y=2,则4x+1+2y的值是_______.
    17.如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是______.

    18.不等式组的解是____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)对x,y定义一种新运算T,规定T(x,y)=(其中a,b是非零常数,且x+y≠0),这里等式右边是通常的四则运算.
    如:T(3,1)=,T(m,﹣2)=.填空:T(4,﹣1)=   (用含a,b的代数式表示);若T(﹣2,0)=﹣2且T(5,﹣1)=1.
    ①求a与b的值;
    ②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.
    20.(6分)综合与探究
    如图,抛物线y=﹣与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过B,C两点,点M从点A出发以每秒1个单位长度的速度向终点B运动,连接CM,将线段MC绕点M顺时针旋转90°得到线段MD,连接CD,BD.设点M运动的时间为t(t>0),请解答下列问题:
    (1)求点A的坐标与直线l的表达式;
    (2)①直接写出点D的坐标(用含t的式子表示),并求点D落在直线l上时的t的值;
    ②求点M运动的过程中线段CD长度的最小值;
    (3)在点M运动的过程中,在直线l上是否存在点P,使得△BDP是等边三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

    21.(6分)如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).
    请画出△ABC关于y轴对称的△A1B1C1;以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.
    22.(8分)已知关于x的方程x2﹣6mx+9m2﹣9=1.
    (1)求证:此方程有两个不相等的实数根;
    (2)若此方程的两个根分别为x1,x2,其中x1>x2,若x1=2x2,求m的值.
    23.(8分) (1)计算:|-1|+(2017-π)0-()-1-3tan30°+;
    (2)化简:(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.
    24.(10分)已知a2+2a=9,求的值.
    25.(10分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.
    求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.
    26.(12分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.
    27.(12分)甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.
    【详解】
    ∵|a|>|c|>|b|,
    ∴点A到原点的距离最大,点C其次,点B最小,
    又∵AB=BC,
    ∴原点O的位置是在点B、C之间且靠近点B的地方.
    故选:C.
    【点睛】
    此题考查了实数与数轴,理解绝对值的定义是解题的关键.
    2、B
    【解析】
    试题解析:在方程4x2﹣2x+ =0中,△=(﹣2)2﹣4×4× =0,
    ∴一元二次方程4x2﹣2x+=0有两个相等的实数根.
    故选B.
    考点:根的判别式.
    3、B
    【解析】
    解:∵一次函数y=(m+1)x+m的图象过第一、三、四象限,
    ∴m+1>0,m<0,即-1<m<0,
    ∴函数有最大值,
    ∴最大值为,
    故选B.
    4、A
    【解析】
    由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,从而求解
    【详解】
    解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.
    故选A.
    【点睛】
    本题考查由三视图判断几何体,掌握几何体的三视图是本题的解题关键.
    5、B
    【解析】
    先利用已知证明,从而得出,求出BD的长度,最后利用求解即可.
    【详解】










    故选:B.
    【点睛】
    本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键.
    6、D
    【解析】
    不等式先展开再移项即可解答.
    【详解】
    解:不等式3x<2(x+2),
    展开得:3x<2x+4,
    移项得:3x-2x<4,
    解之得:x<4.
    故答案选D.
    【点睛】
    本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤.
    7、A
    【解析】
    分析:由方程根的情况,根据根的判别式可求得c的取值范围,则可求得答案.
    详解:∵关于x的方程x1+1x+c=0没有实数根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故选A.
    点睛:本题主要考查了根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.
    8、A
    【解析】
    根据两点直线距离最短可在图中看出三亚-永兴岛之间距离最短.
    【详解】
    由图可得,两个点之间距离最短的是三亚-永兴岛.
    故答案选A.
    【点睛】
    本题考查的知识点是两点之间直线距离最短,解题的关键是熟练的掌握两点之间直线距离最短.
    9、C
    【解析】
    试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.
    试题解析:连接AC,如图:

    根据勾股定理可以得到:AC=BC=,AB=.
    ∵()1+()1=()1.
    ∴AC1+BC1=AB1.
    ∴△ABC是等腰直角三角形.
    ∴∠ABC=45°.
    故选C.
    考点:勾股定理.
    10、C
    【解析】
    求出正三角形的中心角即可得解
    【详解】
    正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为120°,
    故选C.
    【点睛】
    本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角,掌握正多边形的中心角的求解是解题的关键
    11、C
    【解析】
    根据等腰三角形的性质和勾股定理解答即可.
    【详解】
    解:∵点A,D分别对应数轴上的实数﹣2,2,
    ∴AD=4,
    ∵等腰△ABC的底边BC与底边上的高AD相等,
    ∴BC=4,
    ∴CD=2,
    在Rt△ACD中,AC=,
    故选:C.
    【点睛】
    此题考查等腰三角形的性质,注意等腰三角形的三线合一,熟练运用勾股定理.
    12、B
    【解析】
    连接OA、OB,利用正方形的性质得出OA=ABcos45°=2,根据阴影部分的面积=S⊙O-S正方形ABCD列式计算可得.
    【详解】
    解:连接OA、OB,

    ∵四边形ABCD是正方形,
    ∴∠AOB=90°,∠OAB=45°,
    ∴OA=ABcos45°=4×=2,
    所以阴影部分的面积=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.
    故选B.
    【点睛】
    本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、4
    【解析】
    根据圆柱的侧面积公式,计算即可.
    【详解】
    圆柱的底面半径为r=1,母线长为l=2,
    则它的侧面积为S侧=2πrl=2π×1×2=4π.
    故答案为:4π.
    【点睛】
    题考查了圆柱的侧面积公式应用问题,是基础题.
    14、17
    【解析】
    ∵8是出现次数最多的,∴众数是8,
    ∵这组数据从小到大的顺序排列,处于中间位置的两个数都是9,∴中位数是9,
    所以中位数与众数之和为8+9=17.
    故答案为17小时.
    15、
    【解析】
    连接CD在根据垂直平分线的性质可得到△ADC为等腰直角三角形,结合已知的即可得到∠BCD的大小,然后就可以解答出此题
    【详解】
    解:连接CD,
    ∵DE垂直平分AC,
    ∴AD=CD,
    ∴∠DCA=∠BAC=45°,
    ∴△ADC是等腰直角三角形,
    ∴,∠ADC=90°,
    ∴∠BDC=90°,
    ∵∠ACB=75°,
    ∴∠BCD=30°,
    ∴BC= ,
    故答案为.

    【点睛】
    此题主要考查垂直平分线的性质,解题关键在于连接CD利用垂直平分线的性质证明△ADC为等腰直角三角形
    16、1
    【解析】
    分析:将原式化简成2(2x+y)+1,然后利用整体代入的思想进行求解得出答案.
    详解:原式=2(2x+y)+1=2×2+1=1.
    点睛:本题主要考查的是整体思想求解,属于基础题型.找到整体是解题的关键.
    17、
    【解析】
    求出黑色区域面积与正方形总面积之比即可得答案.
    【详解】
    图中有9个小正方形,其中黑色区域一共有3个小正方形,
    所以随意投掷一个飞镖,击中黑色区域的概率是,
    故答案为.
    【点睛】
    本题考查了几何概率,熟练掌握概率的计算公式是解题的关键.注意面积之比几何概率.
    18、
    【解析】
    分别求出各不等式的解集,再求出其公共解集即可.
    【详解】

    解不等式①,得x>1,
    解不等式②,得x≤1,
    所以不等式组的解集是1<x≤1,
    故答案是:1<x≤1.
    【点睛】
    考查了一元一次不等式解集的求法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1) ;(2)①a=1,b=-1,②m=2.
    【解析】
    (1)根据题目中的新运算法则计算即可;
    (2)①根据题意列出方程组即可求出a,b的值;
    ②先分别算出T(3m﹣3,m)与T(m,3m﹣3)的值,再根据求出的值列出等式即可得出结论.
    【详解】
    解:(1)T(4,﹣1)=
    =;
    故答案为;
    (2)①∵T(﹣2,0)=﹣2且T(2,﹣1)=1,

    解得
    ②解法一:
    ∵a=1,b=﹣1,且x+y≠0,
    ∴T(x,y)===x﹣y.
    ∴T(3m﹣3,m)=3m﹣3﹣m=2m﹣3,
    T(m,3m﹣3)=m﹣3m+3=﹣2m+3.
    ∵T(3m﹣3,m)=T(m,3m﹣3),
    ∴2m﹣3=﹣2m+3,
    解得,m=2.
    解法二:由解法①可得T(x,y)=x﹣y,
    当T(x,y)=T(y,x)时,
    x﹣y=y﹣x,
    ∴x=y.
    ∵T(3m﹣3,m)=T(m,3m﹣3),
    ∴3m﹣3=m,
    ∴m=2.
    【点睛】
    本题关键是能够把新运算转化为我们学过的知识,并应用一元一次方程或二元一次方程进行解题..
    20、(1)A(﹣3,0),y=﹣x+;(2)①D(t﹣3+,t﹣3),②CD最小值为;(3)P(2,﹣),理由见解析.
    【解析】
    (1)当y=0时,﹣=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系数法可求直线l的表达式;
    (2)分当点M在AO上运动时,当点M在OB上运动时,进行讨论可求D点坐标,将D点坐标代入直线解析式求得t的值;线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,根据勾股定理可求点M运动的过程中线段CD长度的最小值;
    (3)分当点M在AO上运动时,即0<t<3时,当点M在OB上运动时,即3≤t≤4时,进行讨论可求P点坐标.
    【详解】
    (1)当y=0时,﹣=0,解得x1=1,x2=﹣3,
    ∵点A在点B的左侧,
    ∴A(﹣3,0),B(1,0),
    由解析式得C(0,),
    设直线l的表达式为y=kx+b,将B,C两点坐标代入得b=mk﹣,
    故直线l的表达式为y=﹣x+;
    (2)当点M在AO上运动时,如图:

    由题意可知AM=t,OM=3﹣t,MC⊥MD,过点D作x轴的垂线垂足为N,
    ∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,
    ∴∠MCO=∠DMN,
    在△MCO与△DMN中,

    ∴△MCO≌△DMN,
    ∴MN=OC=,DN=OM=3﹣t,
    ∴D(t﹣3+,t﹣3);
    同理,当点M在OB上运动时,如图,

    OM=t﹣3,△MCO≌△DMN,MN=OC=,ON=t﹣3+,DN=OM=t﹣3,
    ∴D(t﹣3+,t﹣3).
    综上得,D(t﹣3+,t﹣3).
    将D点坐标代入直线解析式得t=6﹣2,
    线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,
    ∵M在AB上运动,
    ∴当CM⊥AB时,CM最短,CD最短,即CM=CO=,根据勾股定理得CD最小;
    (3)当点M在AO上运动时,如图,即0<t<3时,

    ∵tan∠CBO==,
    ∴∠CBO=60°,
    ∵△BDP是等边三角形,
    ∴∠DBP=∠BDP=60°,BD=BP,
    ∴∠NBD=60°,DN=3﹣t,AN=t+,NB=4﹣t﹣,tan∠NBO=,
    =,解得t=3﹣,
    经检验t=3﹣是此方程的解,
    过点P作x轴的垂线交于点Q,易知△PQB≌△DNB,
    ∴BQ=BN=4﹣t﹣=1,PQ=,OQ=2,P(2,﹣);
    同理,当点M在OB上运动时,即3≤t≤4时,
    ∵△BDP是等边三角形,
    ∴∠DBP=∠BDP=60°,BD=BP,
    ∴∠NBD=60°,DN=t﹣3,NB=t﹣3+﹣1=t﹣4+,tan∠NBD=,
    =,解得t=3﹣,
    经检验t=3﹣是此方程的解,t=3﹣(不符合题意,舍).
    故P(2,﹣).
    【点睛】
    考查了二次函数综合题,涉及的知识点有:待定系数法,勾股定理,等腰直角三角形的性质,等边三角形的性质,三角函数,分类思想的运用,方程思想的运用,综合性较强,有一定的难度.
    21、(1)见解析;(2)图见解析;.
    【解析】
    (1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可.
    (2)连接A1O并延长至A2,使A2O=2A1O,连接B1O并延长至B2,使B2O=2B1O,连接C1O并延长至C2,使C2O=2C1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答.
    【详解】
    解:(1)△A1B1C1如图所示.
    (2)△A2B2C2如图所示.
    ∵△A1B1C1放大为原来的2倍得到△A2B2C2,∴△A1B1C1∽△A2B2C2,且相似比为.
    ∴S△A1B1C1:S△A2B2C2=()2=.

    22、 (1)见解析;(2)m=2
    【解析】
    (1)根据一元二次方程根的判别式进行分析解答即可;
    (2)用“因式分解法”解原方程,求得其两根,再结合已知条件分析解答即可.
    【详解】
    (1)∵在方程x2﹣6mx+9m2﹣9=1中,△=(﹣6m)2﹣4(9m2﹣9)=26m2﹣26m2+26=26>1.
    ∴方程有两个不相等的实数根;
    (2)关于x的方程:x2﹣6mx+9m2﹣9=1可化为:[x﹣(2m+2)][x﹣(2m﹣2)]=1,
    解得:x=2m+2和x=2m-2,
    ∵2m+2>2m﹣2,x1>x2,
    ∴x1=2m+2,x2=2m﹣2,
    又∵x1=2x2,
    ∴2m+2=2(2m﹣2)解得:m=2.
    【点睛】
    (1)熟知“一元二次方程根的判别式:在一元二次方程中,当时,原方程有两个不相等的实数根,当时,原方程有两个相等的实数根,当时,原方程没有实数根”是解答第1小题的关键;(2)能用“因式分解法”求得关于x的方程x2﹣6mx+9m2﹣9=1的两个根是解答第2小题的关键.
    23、(1)-2(2)a+3,7
    【解析】
    (1)先根据绝对值、零次方、负整数指数幂、立方根的意义和特殊角的三角函数值把每项化简,再按照实数的运算法则计算即可;
    (2)先根据分式的运算法则把(+)÷化简,再从2,3,4,5中选一个使原分式有意义的值代入计算即可.
    【详解】
    (1)原式=-1+1-4-3×+2=-2;
    (2)原式=[-]÷
    =(-)÷

    =a+3,
    ∵a≠-3,2,3,∴a=4或a=5,
    取a=4,则原式=7.
    【点睛】
    本题考查了实数的混合运算,分式的化简求值,熟练掌握特殊角的三角函数值、负整数指数幂、分式的运算法则是解答本题的关键.
    24、,.
    【解析】
    试题分析:原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式变形后代入计算即可求出值.
    试题解析:
    = = =,
    ∵a2+2a=9,
    ∴(a+1)2=1.
    ∴原式=.
    25、(1)证明见解析;(2).
    【解析】
    (1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.
    (2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.
    【详解】
    解:(1)证明:连接OD,

    ∵∠ACD=60°,
    ∴由圆周角定理得:∠AOD=2∠ACD=120°.
    ∴∠DOP=180°﹣120°=60°.
    ∵∠APD=30°,
    ∴∠ODP=180°﹣30°﹣60°=90°.
    ∴OD⊥DP.
    ∵OD为半径,
    ∴DP是⊙O切线.
    (2)∵∠ODP=90°,∠P=30°,OD=3cm,
    ∴OP=6cm,由勾股定理得:DP=3cm.
    ∴图中阴影部分的面积
    26、(1);(2).
    【解析】
    (1)直接根据概率公式求解;
    (2)先利用树状图展示所有12种等可能的结果数,再找出第二象限内的点的个数,然后根据概率公式计算点(x,y)位于第二象限的概率.
    【详解】
    (1)正数为2,所以该球上标记的数字为正数的概率为;
    (2)画树状图为:

    共有12种等可能的结果数,它们是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的点有2个,所以点(x,y)位于第二象限的概率==.
    【点睛】
    本题考查列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
    27、甲、乙两公司人均捐款分别为80元、100元.
    【解析】
    试题分析:本题考察的是分式的应用题,设甲公司人均捐款x元,根据题意列出方程即可.
    试题解析:
    设甲公司人均捐款x元

    解得:
    经检验,为原方程的根, 80+20=100
    答:甲、乙两公司人均各捐款为80元、100元.

    相关试卷

    山东省青岛大附属中学2022年中考数学四模试卷含解析:

    这是一份山东省青岛大附属中学2022年中考数学四模试卷含解析,共24页。试卷主要包含了《语文课程标准》规定,下列各式中计算正确的是等内容,欢迎下载使用。

    河南省郑州大第一附属中学2021-2022学年中考二模数学试题含解析:

    这是一份河南省郑州大第一附属中学2021-2022学年中考二模数学试题含解析,共21页。试卷主要包含了对于数据,五个新篮球的质量等内容,欢迎下载使用。

    2022年山东省青岛市青岛大附属中学中考联考数学试卷含解析:

    这是一份2022年山东省青岛市青岛大附属中学中考联考数学试卷含解析,共19页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map