终身会员
搜索
    上传资料 赚现金
    2021-2022学年山东省聊城临清市中考数学适应性模拟试题含解析
    立即下载
    加入资料篮
    2021-2022学年山东省聊城临清市中考数学适应性模拟试题含解析01
    2021-2022学年山东省聊城临清市中考数学适应性模拟试题含解析02
    2021-2022学年山东省聊城临清市中考数学适应性模拟试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年山东省聊城临清市中考数学适应性模拟试题含解析

    展开
    这是一份2021-2022学年山东省聊城临清市中考数学适应性模拟试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,一、单选题,下列各运算中,计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图所示,的顶点是正方形网格的格点,则的值为(  )

    A. B. C. D.
    2.一组数据是4,x,5,10,11共五个数,其平均数为7,则这组数据的众数是(  )
    A.4 B.5 C.10 D.11
    3.如图,矩形纸片中,,,将沿折叠,使点落在点处,交于点,则的长等于( )

    A. B. C. D.
    4.一、单选题
    如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为(  )

    A.5 B.4 C.3 D.2
    5.下列各运算中,计算正确的是( )
    A. B.
    C. D.
    6.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为(  )

    A.30° B.35° C.40° D.50°
    7.下列基本几何体中,三视图都是相同图形的是(  )
    A. B. C. D.
    8.在实数π,0,,﹣4中,最大的是(  )
    A.π B.0 C. D.﹣4
    9.在下列交通标志中,是中心对称图形的是(  )
    A. B.
    C. D.
    10.一、单选题
    如图: 在中,平分,平分,且交于,若,则等于( )

    A.75 B.100 C.120 D.125
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=_____个单位长度.

    12.已知a<0,那么|﹣2a|可化简为_____.
    13.举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为 0,甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):

    如果你是教练,要选派一名选手参加国际比赛,那么你会选择_____(填“甲” 或“乙”),理由是___________.
    14.如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为_________海里.(结果保留根号)

    15.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE=_____.

    16.分解因式:a2-2ab+b2-1=______.
    三、解答题(共8题,共72分)
    17.(8分)如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.
    (1)求抛物线的解析式及点C的坐标;
    (2)若点P在第二象限内,过点P作PD⊥轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?
    (3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得△MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
    18.(8分)如图,在平面直角坐标系中,矩形DOBC的顶点O与坐标原点重合,B、D分别在坐标轴上,点C的坐标为(6,4),反比例函数y=(x>0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.
    (1)求反比例函数的解析式;
    (2)求△OEF的面积;
    (3)设直线EF的解析式为y=k2x+b,请结合图象直接写出不等式k2x+b>的解集.

    19.(8分)如图,已知△ABC内接于,AB是直径,OD∥AC,AD=OC.
    (1)求证:四边形OCAD是平行四边形;
    (2)填空:①当∠B= 时,四边形OCAD是菱形;
    ②当∠B= 时,AD与相切.

    20.(8分)已知:如图.D是的边上一点,,交于点M,.
    (1)求证:;
    (2)若,试判断四边形的形状,并说明理由.

    21.(8分)如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.

    (1)求该二次函数的解析式及点M的坐标;
    (2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;
    (3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).
    22.(10分)某新建小区要修一条1050米长的路,甲、乙两个工程队想承建这项工程.经
    了解得到以下信息(如表):
    工程队
    每天修路的长度(米)
    单独完成所需天数(天)
    每天所需费用(元)
    甲队
    30
    n
    600
    乙队
    m
    n﹣14
    1160
    (1)甲队单独完成这项工程所需天数n=  ,乙队每天修路的长度m=  (米);
    (2)甲队先修了x米之后,甲、乙两队一起修路,又用了y天完成这项工程(其中x,y为正整数).
    ①当x=90时,求出乙队修路的天数;
    ②求y与x之间的函数关系式(不用写出x的取值范围);
    ③若总费用不超过22800元,求甲队至少先修了多少米.
    23.(12分)在以“关爱学生、安全第一”为主题的安全教育宣传月活动中,某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A:结伴步行、B:自行乘车、C:家人接送、D:其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:

    (1)本次抽查的学生人数是多少人?
    (2)请补全条形统计图;请补全扇形统计图;
    (3)“自行乘车”对应扇形的圆心角的度数是  度;
    (4)如果该校学生有2000人,请你估计该校“家人接送”上学的学生约有多少人?
    24.如图(1),AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由;
    若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的∠1与∠2的关系成立吗?请说明理由.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    连接CD,求出CD⊥AB,根据勾股定理求出AC,在Rt△ADC中,根据锐角三角函数定义求出即可.
    【详解】
    解:连接CD(如图所示),设小正方形的边长为,
    ∵BD=CD==,∠DBC=∠DCB=45°,
    ∴,
    在中,,,则.

    故选B.
    【点睛】
    本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.
    2、B
    【解析】
    试题分析:(4+x+3+30+33)÷3=7,
    解得:x=3,
    根据众数的定义可得这组数据的众数是3.
    故选B.
    考点:3.众数;3.算术平均数.
    3、B
    【解析】
    由折叠的性质得到AE=AB,∠E=∠B=90°,易证Rt△AEF≌Rt△CDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6-x,在Rt△CDF中利用勾股定理得到关于x的方程x2=42+(6-x)2,解方程求出x即可.
    【详解】
    ∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,
    ∴AE=AB,∠E=∠B=90°,
    又∵四边形ABCD为矩形,
    ∴AB=CD,
    ∴AE=DC,
    而∠AFE=∠DFC,
    ∵在△AEF与△CDF中,

    ∴△AEF≌△CDF(AAS),
    ∴EF=DF;
    ∵四边形ABCD为矩形,
    ∴AD=BC=6,CD=AB=4,
    ∵Rt△AEF≌Rt△CDF,
    ∴FC=FA,
    设FA=x,则FC=x,FD=6-x,
    在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x=,
    则FD=6-x=.
    故选B.
    【点睛】
    考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.
    4、B
    【解析】
    根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.
    【详解】
    解:∵△ABC绕点A顺时针旋转 60°得到△AED,
    ∴AB=AE,∠BAE=60°,
    ∴△AEB是等边三角形,
    ∴BE=AB,
    ∵AB=1,
    ∴BE=1.
    故选B.
    【点睛】
    本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.
    5、D
    【解析】
    利用同底数幂的除法法则、同底数幂的乘法法则、幂的乘方法则以及完全平方公式即可判断.
    【详解】
    A、,该选项错误;
    B、,该选项错误;
    C、,该选项错误;
    D、,该选项正确;
    故选:D.
    【点睛】
    本题考查了同底数幂的乘法、除法法则,幂的乘方法则以及完全平方公式,正确理解法则是关键.
    6、A
    【解析】
    根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解
    【详解】
    ∵CC′∥AB,∠CAB=75°,
    ∴∠C′CA=∠CAB=75°,
    又∵C、C′为对应点,点A为旋转中心,
    ∴AC=AC′,即△ACC′为等腰三角形,
    ∴∠CAC′=180°﹣2∠C′CA=30°.
    故选A.
    【点睛】
    此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键
    7、C
    【解析】
    根据主视图、左视图、俯视图的定义,可得答案.
    【详解】
    球的三视图都是圆,
    故选C.
    【点睛】
    本题考查了简单几何体的三视图,熟记特殊几何体的三视图是解题关键.
    8、C
    【解析】
    根据实数的大小比较即可得到答案.
    【详解】
    解:∵16<17<25,∴4<<5,∴>π>0>-4,故最大的是,故答案选C.
    【点睛】
    本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.
    9、C
    【解析】
    解:A图形不是中心对称图形;
    B不是中心对称图形;
    C是中心对称图形,也是轴对称图形;
    D是轴对称图形;不是中心对称图形
    故选C
    10、B
    【解析】
    根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.
    【详解】
    解:∵CE平分∠ACB,CF平分∠ACD,
    ∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,
    ∴△EFC为直角三角形,
    又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
    ∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
    ∴CM=EM=MF=5,EF=10,
    由勾股定理可知CE2+CF2=EF2=1.
    故选:B.
    【点睛】
    本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1
    【解析】
    根据P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;可知每移动一次,圆心离中心的距离增加1个单位,依据2018=3×672+2,即可得到点P2018在正南方向上,P0P2018=672+1=1.
    【详解】
    由图可得,P0P1=1,P0P2=1,P0P3=1;
    P0P4=2,P0P5=2,P0P6=2;
    P0P7=3,P0P8=3,P0P9=3;
    ∵2018=3×672+2,
    ∴点P2018在正南方向上,
    ∴P0P2018=672+1=1,
    故答案为1.
    【点睛】
    本题主要考查了坐标与图形变化,应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
    12、﹣3a
    【解析】
    根据二次根式的性质和绝对值的定义解答.
    【详解】
    ∵a<0,
    ∴|﹣2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.
    【点睛】
    本题主要考查了根据二次根式的意义化简.二次根式规律总结:当a≥0时,=a;当a≤0时,=﹣a.解题关键是要判断绝对值符号和根号下代数式的正负再去掉符号.
    13、乙 乙的比赛成绩比较稳定.
    【解析】
    观察表格中的数据可知:甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定;乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定,据此可得结论.
    【详解】
    观察表格中的数据可得,甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定; 乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定;
    所以要选派一名选手参加国际比赛,应该选择乙,理由是乙的比赛成绩比较稳定.
    故答案为乙,乙的比赛成绩比较稳定.
    【点睛】
    本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    14、5
    【解析】
    如图,作BH⊥AC于H.在Rt△ABH中,求出BH,再在Rt△BCH中,利用等腰直角三角形的性质求出BC即可.
    【详解】
    如图,作BH⊥AC于H.

    在Rt△ABH中,∵AB=10海里,∠BAH=30°,
    ∴∠ABH=60°,BH=AB=5(海里),
    在Rt△BCH中,∵∠CBH=∠C=45°,BH=5(海里),
    ∴BH=CH=5海里,
    ∴CB=5(海里).
    故答案为:5.
    【点睛】
    本题考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题.
    15、
    【解析】
    ∵在Rt△ABC中,BC=6,sinA=
    ∴AB=10
    ∴.
    ∵D是AB的中点,∴AD=AB=1.
    ∵∠C=∠EDA=90°,∠A=∠A
    ∴△ADE∽△ACB,


    解得:DE=.
    16、 (a-b+1)(a-b-1)
    【解析】
    当被分解的式子是四项时,应考虑运用分组分解法进行分解,前三项a2-2ab+b2可组成完全平方公式,再和最后一项用平方差公式分解.
    【详解】
    a2-2ab+b2-1,
    =(a-b)2-1,
    =(a-b+1)(a-b-1).
    【点睛】
    本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题前三项可组成完全平方公式,可把前三项分为一组,分解一定要彻底.

    三、解答题(共8题,共72分)
    17、(1)y=-x2-2x+1,C(1,0)(2)当t=-2时,线段PE的长度有最大值1,此时P(-2,6)(2)存在这样的直线l,使得△MON为等腰三角形.所求Q点的坐标为
    (,2)或(,2)或(,2)或(,2)
    【解析】
    解:(1)∵直线y=x+1与x轴、y轴分别交于A、B两点,∴A(-1,0),B(0,1).
    ∵抛物线y=-x2+bx+c经过A、B两点,
    ∴,解得.
    ∴抛物线解析式为y=-x2-2x+1.
    令y=0,得-x2-2x+1=0,解得x1=-1,x2=1,
    ∴C(1,0).
    (2)如图1,
    设D(t,0).
    ∵OA=OB,∴∠BAO=15°.
    ∴E(t,t+1),P(t,-t2-2t+1).
    PE=yP-yE=-t2-2t+1-t-1=-t2-1t=-(t+2)2+1.
    ∴当t=-2时,线段PE的长度有最大值1,此时P(-2,6).
    (2)存在.如图2,过N点作NH⊥x轴于点H.
    设OH=m(m>0),∵OA=OB,∴∠BAO=15°.
    ∴NH=AH=1-m,∴yQ=1-m.
    又M为OA中点,∴MH=2-m.
    当△MON为等腰三角形时:
    ①若MN=ON,则H为底边OM的中点,
    ∴m=1,∴yQ=1-m=2.
    由-xQ2-2xQ+1=2,解得.
    ∴点Q坐标为(,2)或(,2).
    ②若MN=OM=2,则在Rt△MNH中,
    根据勾股定理得:MN2=NH2+MH2,即22=(1-m)2+(2-m)2,
    化简得m2-6m+8=0,解得:m1=2,m2=1(不合题意,舍去).
    ∴yQ=2,由-xQ2-2xQ+1=2,解得.
    ∴点Q坐标为(,2)或(,2).
    ③若ON=OM=2,则在Rt△NOH中,
    根据勾股定理得:ON2=NH2+OH2,即22=(1-m)2+m2,
    化简得m2-1m+6=0,∵△=-8<0,
    ∴此时不存在这样的直线l,使得△MON为等腰三角形.
    综上所述,存在这样的直线l,使得△MON为等腰三角形.所求Q点的坐标为
    (,2)或(,2)或(,2)或(,2).
    (1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式,并求出抛物线与x轴另一交点C的坐标.
    (2)求出线段PE长度的表达式,设D点横坐标为t,则可以将PE表示为关于t的二次函数,利用二次函数求极值的方法求出PE长度的最大值.
    (2)根据等腰三角形的性质和勾股定理,将直线l的存在性问题转化为一元二次方程问题,通过一元二次方程的判别式可知直线l是否存在,并求出相应Q点的坐标. “△MON是等腰三角形”,其中包含三种情况:MN=ON,MN=OM,ON=OM,逐一讨论求解.
    18、(1)y=;(2);(3)<x<1.
    【解析】
    (1)先利用矩形的性质确定C点坐标(1,4),再确定A点坐标为(3,2),根据反比例函数图象上点的坐标特征得到k1=1,即反比例函数解析式为y=;(2)利用反比例函数解析式确定F点的坐标为(1,1),E点坐标为(,4),然后根据△OEF的面积=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF进行计算;
    (3)观察函数图象得到当<x<1时,一次函数图象都在反比例函数图象上方,即k2x+b>.
    【详解】
    (1)∵四边形DOBC是矩形,且点C的坐标为(1,4),
    ∴OB=1,OD=4,
    ∵点A为线段OC的中点,
    ∴A点坐标为(3,2),
    ∴k1=3×2=1,
    ∴反比例函数解析式为y=;
    (2)把x=1代入y=得y=1,则F点的坐标为(1,1);
    把y=4代入y=得x=,则E点坐标为(,4),
    △OEF的面积=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF
    =4×1﹣×4×﹣×1×1﹣×(1﹣)×(4﹣1)
    =;
    (3)由图象得:不等式不等式k2x+b>的解集为<x<1.
    【点睛】
    本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解即可.
    19、(1)证明见解析;(2)① 30°,② 45°
    【解析】
    试题分析:(1)根据已知条件求得∠OAC=∠OCA,∠AOD=∠ADO,然后根据三角形内角和定理得出∠AOC=∠OAD,从而证得OC∥AD,即可证得结论;
    (2)①若四边形OCAD是菱形,则OC=AC,从而证得OC=OA=AC,得出∠即可求得
    ②AD与相切,根据切线的性质得出根据AD∥OC,内错角相等得出从而求得
    试题解析:(方法不唯一)
    (1)∵OA=OC,AD=OC,
    ∴OA=AD,
    ∴∠OAC=∠OCA,∠AOD=∠ADO,
    ∵OD∥AC,
    ∴∠OAC=∠AOD,
    ∴∠OAC=∠OCA=∠AOD=∠ADO,
    ∴∠AOC=∠OAD,
    ∴OC∥AD,
    ∴四边形OCAD是平行四边形;
    (2)①∵四边形OCAD是菱形,
    ∴OC=AC,
    又∵OC=OA,
    ∴OC=OA=AC,


    故答案为
    ②∵AD与相切,

    ∵AD∥OC,


    故答案为
    20、(1)证明见解析;(2)四边形ADCN是矩形,理由见解析.
    【解析】
    (1)根据平行得出∠DAM=∠NCM,根据ASA推出△AMD≌△CMN,得出AD=CN,推出四边形ADCN是平行四边形即可;
    (2)根据∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC求出∠MCD=∠MDC,推出MD=MC,求出MD=MN=MA=MC,推出AC=DN,根据矩形的判定得出即可.
    【详解】
    证明:(1)∵CN∥AB,
    ∴∠DAM=∠NCM,
    ∵在△AMD和△CMN中,
    ∠DAM=∠NCM
    MA=MC
    ∠DMA=∠NMC,
    ∴△AMD≌△CMN(ASA),
    ∴AD=CN,
    又∵AD∥CN,
    ∴四边形ADCN是平行四边形,
    ∴CD=AN;
    (2)解:四边形ADCN是矩形,
    理由如下:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,
    ∴∠MCD=∠MDC,
    ∴MD=MC,
    由(1)知四边形ADCN是平行四边形,
    ∴MD=MN=MA=MC,
    ∴AC=DN,
    ∴四边形ADCN是矩形.
    【点睛】
    本题考查了全等三角形的性质和判定,平行四边形的判定和性质,矩形的判定的应用,能综合运用性质进行推理是解此题的关键,综合性比较强,难度适中.
    21、(1)y=﹣x2+2x+4;M(1,5);(2)2<m<4;(3)P1(),P2(),P3(3,1),P4(﹣3,7).
    【解析】
    试题分析:(1)将点A、点C的坐标代入函数解析式,即可求出b、c的值,通过配方法得到点M的坐标;(2)点M是沿着对称轴直线x=1向下平移的,可先求出直线AC的解析式,将x=1代入求出点M在向下平移时与AC、AB相交时y的值,即可得到m的取值范围;(3)由题意分析可得∠MCP=90°,则若△PCM与△BCD相似,则要进行分类讨论,分成△PCM∽△BDC或△PCM∽△CDB两种,然后利用边的对应比值求出点坐标.
    试题解析:(1)把点A(3,1),点C(0,4)代入二次函数y=﹣x2+bx+c得,
    解得 ∴二次函数解析式为y=﹣x2+2x+4, 配方得y=﹣(x﹣1)2+5,
    ∴点M的坐标为(1,5);
    (2)设直线AC解析式为y=kx+b,把点A(3,1),C(0,4)代入得, 解得:
    ∴直线AC的解析式为y=﹣x+4,如图所示,对称轴直线x=1与△ABC两边分别交于点E、点F
    把x=1代入直线AC解析式y=﹣x+4解得y=3,则点E坐标为(1,3),点F坐标为(1,1)
    ∴1<5﹣m<3,解得2<m<4;
    (3)连接MC,作MG⊥y轴并延长交AC于点N,则点G坐标为(0,5) ∵MG=1,GC=5﹣4=1
    ∴MC==, 把y=5代入y=﹣x+4解得x=﹣1,则点N坐标为(﹣1,5),
    ∵NG=GC,GM=GC, ∴∠NCG=∠GCM=45°, ∴∠NCM=90°,
    由此可知,若点P在AC上,则∠MCP=90°,则点D与点C必为相似三角形对应点
    ①若有△PCM∽△BDC,则有
    ∵BD=1,CD=3, ∴CP===, ∵CD=DA=3, ∴∠DCA=45°,
    若点P在y轴右侧,作PH⊥y轴, ∵∠PCH=45°,CP= ∴PH==
    把x=代入y=﹣x+4,解得y=, ∴P1();
    同理可得,若点P在y轴左侧,则把x=﹣代入y=﹣x+4,解得y= ∴P2();
    ②若有△PCM∽△CDB,则有 ∴CP==3 ∴PH=3÷=3,
    若点P在y轴右侧,把x=3代入y=﹣x+4,解得y=1;
    若点P在y轴左侧,把x=﹣3代入y=﹣x+4,解得y=7
    ∴P3(3,1);P4(﹣3,7).
    ∴所有符合题意得点P坐标有4个,分别为P1(),P2(),P3(3,1),P4(﹣3,7).

    考点:二次函数综合题
    22、(1)35,50;(2)①12;②y=﹣x+;③150米.
    【解析】
    (1)用总长度÷每天修路的长度可得n的值,继而可得乙队单独完成时间,再用总长度÷乙单独完成所需时间可得乙队每天修路的长度m;
    (2)①根据:甲队先修建的长度+(甲队每天修建长度+乙队每天修建长度)×两队合作时间=总长度,列式计算可得;
    ②由①中的相等关系可得y与x之间的函数关系式;
    ③根据:甲队先修x米的费用+甲、乙两队每天费用×合作时间≤22800,列不等式求解可得.
    【详解】
    解:(1)甲队单独完成这项工程所需天数n=1050÷30=35(天),
    则乙单独完成所需天数为21天,
    ∴乙队每天修路的长度m=1050÷21=50(米),
    故答案为35,50;
    (2)①乙队修路的天数为=12(天);
    ②由题意,得:x+(30+50)y=1050,
    ∴y与x之间的函数关系式为:y=﹣x+;
    ③由题意,得:600×+(600+1160)(﹣x+)≤22800,
    解得:x≥150,
    答:若总费用不超过22800元,甲队至少先修了150米.
    【点睛】
    本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.
    23、(1)本次抽查的学生人数是120人;(2)见解析;(3)126;(4)该校“家人接送”上学的学生约有500人.
    【解析】
    (1)本次抽查的学生人数:18÷15%=120(人);
    (2)A:结伴步行人数120﹣42﹣30﹣18=30(人),据此补全条形统计图;
    (3)“自行乘车”对应扇形的圆心角的度数360°×=126°;
    (4)估计该校“家人接送”上学的学生约有:2000×25%=500(人).
    【详解】
    解:(1)本次抽查的学生人数:18÷15%=120(人),
    答:本次抽查的学生人数是120人;
    (2)A:结伴步行人数120﹣42﹣30﹣18=30(人),
    补全条形统计图如下:

    “结伴步行”所占的百分比为×100%=25%;“自行乘车”所占的百分比为×100%=35%,
    “自行乘车”在扇形统计图中占的度数为360°×35%=126°,补全扇形统计图,如图所示;

    (3)“自行乘车”对应扇形的圆心角的度数360°×=126°,
    故答案为126;
    (4)估计该校“家人接送”上学的学生约有:2000×25%=500(人),
    答:该校“家人接送”上学的学生约有500人.
    【点睛】
    本题主要考查条形统计图及扇形统计图及相关计算,用样本估计总体.解题的关键是读懂统计图,从条形统计图中得到必要的信息是解决问题的关键.
    24、详见解析.
    【解析】
    (1)根据全等三角形判定中的“SSS”可得出△ADC≌△CBA,由全等的性质得∠DAC=∠BCA,可证AD∥BC,根据平行线的性质得出∠1=∠1;
    (1)(3)和(1)的证法完全一样.先证△ADC≌△CBA得到∠DAC=∠BCA,则DA∥BC,从而∠1=∠1.
    【详解】
    证明:∠1与∠1相等.
    在△ADC与△CBA中,

    ∴△ADC≌△CBA.(SSS)
    ∴∠DAC=∠BCA.
    ∴DA∥BC.
    ∴∠1=∠1.
    ②③图形同理可证,△ADC≌△CBA得到∠DAC=∠BCA,则DA∥BC,∠1=∠1.

    相关试卷

    2023年山东省聊城市临清市中考数学二模试卷(含解析): 这是一份2023年山东省聊城市临清市中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省聊城市临清市中考数学一模试卷(含解析): 这是一份2023年山东省聊城市临清市中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山东省聊城临清市重点中学2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份山东省聊城临清市重点中学2021-2022学年中考数学对点突破模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列分式中,最简分式是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map