


2021-2022学年山东省邹城市达标名校中考考前最后一卷数学试卷含解析
展开
这是一份2021-2022学年山东省邹城市达标名校中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,一元二次方程的根的情况是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为( )
A.160米 B.(60+160) C.160米 D.360米
2.下列4个数:,,π,()0,其中无理数是( )
A. B. C.π D.()0
3.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是( )
A.k> B.k≥ C.k>且k≠1 D.k≥且k≠1
4.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是( )
A. B. C. D.
5.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE= ,其中正确结论的个数是( )
A.1 B.2 C.3 D.4
6.直线y=x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为( )
A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)
7.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( )
A. B. C. D.
8.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是( )
A.y=(x﹣2)2+1 B.y=(x+2)2+1
C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3
9.一元二次方程的根的情况是( )
A.有一个实数根 B.有两个相等的实数根
C.有两个不相等的实数根 D.没有实数根
10.一个半径为24的扇形的弧长等于20π,则这个扇形的圆心角是( )
A.120° B.135° C.150° D.165°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=________.
12.分解因式:a2-2ab+b2-1=______.
13.如图,AB为⊙O的直径,BC为⊙O的弦,点D是劣弧AC上一点,若点E在直径AB另一侧的半圆上,且∠AED=27°,则∠BCD的度数为_______.
14.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于_____.
15.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.
16.如果a是不为1的有理数,我们把称为a的差倒数如:2的差倒数是,-1的差倒数是,已知,是的差倒数,是的差倒数,是的差倒数,…,依此类推,则 ___________ .
三、解答题(共8题,共72分)
17.(8分)如图,在矩形ABCD中,对角线AC,BD相交于点O.
(1)画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.
(2)观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.
18.(8分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的宽度AC.(结果精确到0.1米,参考数据:sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.5,≈1.73)
19.(8分)我市为创建全国文明城市,志愿者对某路段的非机动车逆行情况进行了10天的调查,将所得数据绘制成如下统计图(图2不完整):
请根据所给信息,解答下列问题:
(1)这组数据的中位数是 ,众数是 ;
(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)
(3)通过“小手拉大手”活动后,非机动车逆向行驶次数明显减少,经过这一路段的再次调查发现,平均每天的非机动车逆向行驶次数比第一次调查时减少了4次,活动后,这一路段平均每天还出现多少次非机动车逆向行驶情况?
20.(8分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
21.(8分)解不等式组:,并把解集在数轴上表示出来.
22.(10分)已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:△ACE∽△BDE;BE•DC=AB•DE.
23.(12分)某食品厂生产一种半成品食材,产量百千克与销售价格元千克满足函数关系式,从市场反馈的信息发现,该半成品食材的市场需求量百千克与销售价格元千克满足一次函数关系,如下表:
销售价格元千克
2
4
10
市场需求量百千克
12
10
4
已知按物价部门规定销售价格x不低于2元千克且不高于10元千克
求q与x的函数关系式;
当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x的取值范围;
当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃若该半成品食材的成本是2元千克.
求厂家获得的利润百元与销售价格x的函数关系式;
当厂家获得的利润百元随销售价格x的上涨而增加时,直接写出x的取值范围利润售价成本
24.武汉二中广雅中学为了进一步改进本校九年级数学教学,提高学生学习数学的兴趣.校教务处在九年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查:我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“非常喜欢”、“ 比较喜欢”、“ 不太喜欢”、“ 很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计.现将统计结果绘制成如下两幅不完整的统计图.
请你根据以上提供的信息,解答下列问题:
(1)补全上面的条形统计图和扇形统计图;
(2)所抽取学生对数学学习喜欢程度的众数是 ,图②中所在扇形对应的圆心角是 ;
(3)若该校九年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
过点A作AD⊥BC于点D.根据三角函数关系求出BD、CD的长,进而可求出BC的长.
【详解】
如图所示,过点A作AD⊥BC于点D.
在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD∙tan30°=120×=m;
在Rt△ADC中,∠DAC=60°,CD=AD∙tan60°=120×=m.
∴BC=BD+DC=m.
故选C.
【点睛】
本题主要考查三角函数,解答本题的关键是熟练掌握三角函数的有关知识,并牢记特殊角的三角函数值.
2、C
【解析】
=3,是无限循环小数,π是无限不循环小数,,所以π是无理数,故选C.
3、C
【解析】
根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>且k≠1.
故选C
【点睛】
本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
4、A
【解析】
对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.
【详解】
解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.
【点睛】
本题考查了三视图的概念.
5、C
【解析】
∵四边形ABCD是正方形,
∴AD=BC,∠DAB=∠ABC=90°,
∵BP=CQ,
∴AP=BQ,
在△DAP与△ABQ中, ,
∴△DAP≌△ABQ,
∴∠P=∠Q,
∵∠Q+∠QAB=90°,
∴∠P+∠QAB=90°,
∴∠AOP=90°,
∴AQ⊥DP;
故①正确;
∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,
∴∠DAO=∠P,
∴△DAO∽△APO,
∴ ,
∴AO2=OD•OP,
∵AE>AB,
∴AE>AD,
∴OD≠OE,
∴OA2≠OE•OP;故②错误;
在△CQF与△BPE中 ,
∴△CQF≌△BPE,
∴CF=BE,
∴DF=CE,
在△ADF与△DCE中, ,
∴△ADF≌△DCE,
∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,
即S△AOD=S四边形OECF;故③正确;
∵BP=1,AB=3,
∴AP=4,
∵△AOP∽△DAP,
∴ ,
∴BE=,∴QE=,
∵△QOE∽△PAD,
∴ ,
∴QO=,OE=,
∴AO=5﹣QO=,
∴tan∠OAE==,故④正确,
故选C.
点睛:本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.
6、C
【解析】
作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.
直线y=x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),
因点C、D分别为线段AB、OB的中点,可得点C(﹣3,1),点D(0,1).
再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣1).
设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,1),D′(0,﹣1),
所以,解得:,
即可得直线CD′的解析式为y=﹣x﹣1.
令y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣,
所以点P的坐标为(﹣,0).故答案选C.
考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.
7、B
【解析】
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值
相关试卷
这是一份安徽省蒙城重点达标名校2021-2022学年中考考前最后一卷数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,计算,定义等内容,欢迎下载使用。
这是一份2021-2022学年揭阳市榕城区重点达标名校中考考前最后一卷数学试卷含解析,共20页。试卷主要包含了如图,一段抛物线,已知函数的图象与x轴有交点等内容,欢迎下载使用。
这是一份2021-2022学年广东云浮市云安区达标名校中考考前最后一卷数学试卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
