搜索
    上传资料 赚现金
    英语朗读宝

    2022届安徽省阜阳市太和县毕业升学考试模拟卷数学卷含解析

    2022届安徽省阜阳市太和县毕业升学考试模拟卷数学卷含解析第1页
    2022届安徽省阜阳市太和县毕业升学考试模拟卷数学卷含解析第2页
    2022届安徽省阜阳市太和县毕业升学考试模拟卷数学卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届安徽省阜阳市太和县毕业升学考试模拟卷数学卷含解析

    展开

    这是一份2022届安徽省阜阳市太和县毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了若正比例函数y=mx,下列计算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为(  )
    A.5cm B.5cm或3cm C.7cm或3cm D.7cm
    2.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )
    A. B. C. D.
    3.天气越来越热,为防止流行病传播,学校决定用420元购买某种牌子的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为( )
    A.-=20 B.-=20
    C.-=20 D.
    4.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于(  )
    A.2 B.﹣2 C.4 D.﹣4
    5.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是(  )

    A. B. C. D.
    6.下列计算正确的是( )
    A.(a-3)2=a2-6a-9 B.(a+3)(a-3)=a2-9
    C.(a-b)2=a2-b2 D.(a+b)2=a2+a2
    7.下列计算正确的是(  )
    A.(a)=a B.a+a=a
    C.(3a)•(2a)=6a D.3a﹣a=3
    8.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为(  )

    A.3 B.4 C.5 D.6
    9.已知关于x的方程2x+a-9=0的解是x=2,则a的值为
    A.2 B.3 C.4 D.5
    10.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是( )
    A.2(x1)+3x=13 B.2(x+1)+3x=13
    C.2x+3(x+1)=13 D.2x+3(x1)=13
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在平面直角坐标系xOy中,直线l:y=x-与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,按此规律进行下去,则点A3的横坐标为______;点A2018的横坐标为______.

    12.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为______.
    13.如图,正方形ABCD的边长为6,E,F是对角线BD上的两个动点,且EF=,连接CE,CF,则△CEF周长的最小值为_____.

    14.若反比例函数的图象位于第二、四象限,则的取值范围是__.
    15.关于x的分式方程有增根,则m的值为__________.
    16.2017我市社会消费品零售总额达18800000000元,把18800000000用科学记数法表示为_____.
    三、解答题(共8题,共72分)
    17.(8分)已知:如图,在正方形ABCD中,点E、F分别是AB、BC边的中点,AF与CE交点G,求证:AG=CG.

    18.(8分)如图,一次函数y1=﹣x﹣1的图象与x轴交于点A,与y轴交于点B,与反比例函数图象的一个交点为M(﹣2,m).
    (1)求反比例函数的解析式;
    (2)求点B到直线OM的距离.

    19.(8分)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富.某班模拟开展“中国诗词大赛”比赛,对全班同学成绩进行统计后分为“A优秀”、“B一般”、“C较差”、“D良好”四个等级,并根据成绩绘制成如下两幅不完整的统计图.请结合统计图中的信息,回答下列问题:
    (1)本班有多少同学优秀?
    (2)通过计算补全条形统计图.
    (3)学校预全面推广这个比赛提升学生的文化素养,估计该校3000人有多少人成绩良好?

    20.(8分) 如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,且满足BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作FG的平行线,交DA的延长线于点N,连接NG.求证:BE=2CF;试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.

    21.(8分)某校检测学生跳绳水平,抽样调查了部分学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图

    (1)D组的人数是   人,补全频数分布直方图,扇形图中m=   ;
    (2)本次调查数据中的中位数落在   组;
    (3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校4500名学生中“1分钟跳绳”成绩为优秀的大约有多少人?
    22.(10分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作⊙O的切线DE交AC于点E,交AB延长线于点F.
    (1)求证:BD=CD;
    (2)求证:DC2=CE•AC;
    (3)当AC=5,BC=6时,求DF的长.

    23.(12分)如图,在直角坐标系xOy中,直线与双曲线相交于A(-1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.
    求m、n的值;求直线AC的解析式.
    24.如图1,在等边三角形中,为中线,点在线段上运动,将线段绕点顺时针旋转,使得点的对应点落在射线上,连接,设(且).

    (1)当时,
    ①在图1中依题意画出图形,并求(用含的式子表示);
    ②探究线段,,之间的数量关系,并加以证明;
    (2)当时,直接写出线段,,之间的数量关系.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    (1)如图1,当点C在点A和点B之间时,
    ∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,
    ∴MB=AB=4cm,BN=BC=1cm,
    ∴MN=MB-BN=3cm;
    (2)如图2,当点C在点B的右侧时,
    ∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,
    ∴MB=AB=4cm,BN=BC=1cm,
    ∴MN=MB+BN=5cm.
    综上所述,线段MN的长度为5cm或3cm.
    故选B.

    点睛:解本题时,由于题目中告诉的是点C在直线AB上,因此根据题目中所告诉的AB和BC的大小关系要分点C在线段AB上和点C在线段AB的延长线上两种情况分析解答,不要忽略了其中任何一种.
    2、C
    【解析】
    A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选C.
    3、C
    【解析】
    关键描述语是:“结果比用原价多买了1瓶”;等量关系为:原价买的瓶数-实际价格买的瓶数=1.
    【详解】
    原价买可买瓶,经过还价,可买瓶.方程可表示为:﹣=1.
    故选C.
    【点睛】
    考查了由实际问题抽象出分式方程.列方程解应用题的关键步骤在于找相等关系.本题要注意讨价前后商品的单价的变化.
    4、B
    【解析】
    利用待定系数法求出m,再结合函数的性质即可解决问题.
    【详解】
    解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),
    ∴m2=4,
    ∴m=±2,
    ∵y的值随x值的增大而减小,
    ∴m<0,
    ∴m=﹣2,
    故选:B.
    【点睛】
    本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    5、B
    【解析】
    分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1.据此可画出图形.
    详解:由俯视图及其小正方体的分布情况知,
    该几何体的主视图为:

    该几何体的左视图为:

    故选:B.
    点睛:此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.
    6、B
    【解析】
    利用完全平方公式及平方差公式计算即可.
    【详解】
    解:A、原式=a2-6a+9,本选项错误;
    B、原式=a2-9,本选项正确;
    C、原式=a2-2ab+b2,本选项错误;
    D、原式=a2+2ab+b2,本选项错误,
    故选:B.
    【点睛】
    本题考查了平方差公式和完全平方公式,熟练掌握公式是解题的关键.
    7、A
    【解析】
    根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.
    【详解】
    A.(a2)3=a2×3=a6,故本选项正确;
    B.a2+a2=2a2,故本选项错误;
    C.(3a)•(2a)2=(3a)•(4a2)=12a1+2=12a3,故本选项错误;
    D.3a﹣a=2a,故本选项错误.
    故选A.
    【点睛】
    本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键.
    8、C
    【解析】
    如图所示,∵(a+b)2=21
    ∴a2+2ab+b2=21,
    ∵大正方形的面积为13,2ab=21﹣13=8,
    ∴小正方形的面积为13﹣8=1.
    故选C.
    考点:勾股定理的证明.
    9、D
    【解析】
    ∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,
    解得a=1.故选D. 
    10、A
    【解析】
    要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A饮料的钱+买B饮料的钱=总印数1元,明确了等量关系再列方程就不那么难了.
    【详解】
    设B种饮料单价为x元/瓶,则A种饮料单价为(x-1)元/瓶,
    根据小峰买了2瓶A种饮料和3瓶B种饮料,一共花了1元,
    可得方程为:2(x-1)+3x=1.
    故选A.
    【点睛】
    列方程题的关键是找出题中存在的等量关系,此题的等量关系为买A中饮料的钱+买B中饮料的钱=一共花的钱1元.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    利用一次函数图象上点的坐标特征可求出点B1的坐标,根据等边三角形的性质可求出点A1的坐标,同理可得出点B2、A2、A3的坐标,根据点An坐标的变化即可得出结论.
    【详解】
    当y=0时,有x-=0,
    解得:x=1,
    ∴点B1的坐标为(1,0),
    ∵A1OB1为等边三角形,
    ∴点A1的坐标为(,).
    当y=时.有x-=,
    解得:x=,
    ∴点B2的坐标为(,),
    ∵A2A1B2为等边三角形,
    ∴点A2的坐标为(,).
    同理,可求出点A3的坐标为(,),点A2018的坐标为(,).
    故答案为;.
    【点睛】
    本题考查了一次函数图象上点的坐标特征、等边三角形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合等边三角形的性质找出点An横坐标的变化是解题的关键.
    12、
    【解析】
    利用勾股定理求出斜边长,再利用面积法求出斜边上的高即可.
    【详解】
    解:∵直角三角形的两条直角边的长分别为5,12,
    ∴斜边为=13,
    ∵三角形的面积=×5×12=×13h(h为斜边上的高),
    ∴h=.
    故答案为:.
    【点睛】
    考查了勾股定理,以及三角形面积公式,熟练掌握勾股定理是解本题的关键.
    13、2+4
    【解析】
    如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.
    【详解】
    如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.
    ∵CH=EF,CH∥EF,
    ∴四边形EFHC是平行四边形,
    ∴EC=FH,
    ∵FA=FC,
    ∴EC+CF=FH+AF=AH,
    ∵四边形ABCD是正方形,
    ∴AC⊥BD,∵CH∥DB,
    ∴AC⊥CH,
    ∴∠ACH=90°,
    在Rt△ACH中,AH==4,
    ∴△EFC的周长的最小值=2+4,
    故答案为:2+4.

    【点睛】
    本题考查轴对称﹣最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.
    14、k>1
    【解析】
    根据图象在第二、四象限,利用反比例函数的性质可以确定1-k的符号,即可解答.
    【详解】
    ∵反比例函数y=的图象在第二、四象限,
    ∴1-k<0,
    ∴k>1.
    故答案为:k>1.
    【点睛】
    此题主要考查了反比例函数的性质,熟练记忆当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限是解决问题的关键.
    15、1.
    【解析】
    去分母得:7x+5(x-1)=2m-1,
    因为分式方程有增根,所以x-1=0,所以x=1,
    把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,
    解得:m=1,
    故答案为1.
    16、1.88×1
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:把18800000000用科学记数法表示为1.88×1,
    故答案为:1.88×1.
    【点睛】
    此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

    三、解答题(共8题,共72分)
    17、详见解析.
    【解析】
    先证明△ADF≌△CDE,由此可得∠DAF=∠DCE,∠AFD=∠CED,再根据∠EAG=∠FCG,AE=CF,∠AEG=∠CFG可得△AEG≌△CFG,所以AG=CG.
    【详解】
    证明:∵四边形ABCD是正方形,
    ∴AD=DC,
    ∵E、F分别是AB、BC边的中点,
    ∴AE=ED=CF=DF.
    又∠D=∠D,
    ∴△ADF≌△CDE(SAS).
    ∴∠DAF=∠DCE,∠AFD=∠CED.
    ∴∠AEG=∠CFG.
    在△AEG和△CFG中

    ∴△AEG≌△CFG(ASA).
    ∴AG=CG.
    【点睛】
    本题主要考查正方形的性质、全等三角形的判定和性质,关键是要灵活运用全等三角形的判定方法.
    18、(1)(2).
    【解析】
    (1)根据一次函数解析式求出M点的坐标,再把M点的坐标代入反比例函数解析式即可;
    (2)设点B到直线OM的距离为h,过M点作MC⊥y轴,垂足为C,根据一次函数解析式表示出B点坐标,利用△OMB的面积=×BO×MC算出面积,利用勾股定理算出MO的长,再次利用三角形的面积公式可得OM•h,根据前面算的三角形面积可算出h的值.
    【详解】
    解:(1)∵一次函数y1=﹣x﹣1过M(﹣2,m),∴m=1.∴M(﹣2,1).
    把M(﹣2,1)代入得:k=﹣2.
    ∴反比列函数为.
    (2)设点B到直线OM的距离为h,过M点作MC⊥y轴,垂足为C.

    ∵一次函数y1=﹣x﹣1与y轴交于点B,
    ∴点B的坐标是(0,﹣1).
    ∴.
    在Rt△OMC中,,
    ∵,∴.
    ∴点B到直线OM的距离为.
    19、(1)本班有4名同学优秀;(2)补图见解析;(3)1500人.
    【解析】
    (1)根据统计图即可得出结论;
    (2)先计算出优秀的学生,再补齐统计图即可;
    (3)根据图2的数值计算即可得出结论.
    【详解】
    (1)本班有学生:20÷50%=40(名),
    本班优秀的学生有:40﹣40×30%﹣20﹣4=4(名),
    答:本班有4名同学优秀;
    (2)成绩一般的学生有:40×30%=12(名),
    成绩优秀的有4名同学,
    补全的条形统计图,如图所示;

    (3)3000×50%=1500(名),
    答:该校3000人有1500人成绩良好.
    【点睛】
    本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的知识点.
    20、(1)见解析;(2)四边形BFGN是菱形,理由见解析.
    【解析】
    (1)过F作FH⊥BE于点H,可证明四边形BCFH为矩形,可得到BH=CF,且H为BE中点,可得BE=2CF;
    (2)由条件可证明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可证得四边形BFGN为菱形.
    【详解】
    (1)证明:过F作FH⊥BE于H点,

    在四边形BHFC中,∠BHF=∠CBH=∠BCF=90°,
    所以四边形BHFC为矩形,
    ∴CF=BH,
    ∵BF=EF,FH⊥BE,
    ∴H为BE中点,
    ∴BE=2BH,
    ∴BE=2CF;
    (2)四边形BFGN是菱形.
    证明:
    ∵将线段EF绕点F顺时针旋转90°得FG,
    ∴EF=GF,∠GFE=90°,
    ∴∠EFH+∠BFH+∠GFB=90°
    ∵BN∥FG,
    ∴∠NBF+∠GFB=180°,
    ∴∠NBA+∠ABC+∠CBF+∠GFB=180°,
    ∵∠ABC=90°,
    ∴∠NBA+∠CBF+∠GFB=180°−90°=90°,
    由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,
    ∴∠EFH=90°−∠GFB−∠BFH=90°−∠GFB−∠CBF=∠NBA,
    由BHFC是矩形可得HF=BC,
    ∵BC=AB,∴HF=AB,
    在△ABN和△HFE中,,
    ∴△ABN≌△HFE,
    ∴NB=EF,
    ∵EF=GF,
    ∴NB=GF,
    又∵NB∥GF,
    ∴NBFG是平行四边形,
    ∵EF=BF,∴NB=BF,
    ∴平行四边NBFG是菱形.
    点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN≌△HFE是解题的关键.
    21、(1)16、84°;(2)C;(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有3000(人)
    【解析】
    (1)根据百分比=所长人数÷总人数,圆心角=百分比,计算即可;
    (2)根据中位数的定义计算即可;
    (3)用一半估计总体的思考问题即可;
    【详解】
    (1)由题意总人数人,
    D组人数人;
    B组的圆心角为;
    (2)根据A组6人,B组14人,C组19人,D组16人,E组5人可知本次调查数据中的中位数落在C组;
    (3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有人.
    【点睛】
    本题主要考查了数据的统计,熟练掌握扇形图圆心角度数求解方法,总体求解方法等相关内容是解决本题的关键.
    22、(1)详见解析;(2)详见解析;(3)DF=.
    【解析】
    (1)先判断出AD⊥BC,即可得出结论;
    (2)先判断出OD∥AC,进而判断出∠CED=∠ODE,判断出△CDE∽△CAD,即可得出结论;
    (3)先求出OD,再求出CD=3,进而求出CE,AE,DE,再判断出,即可得出结论.
    【详解】
    (1)连接AD,

    ∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∴AD⊥BC,
    ∵AB=AC,
    ∴BD=CD;
    (2)连接OD,
    ∵DE是⊙O的切线,
    ∴∠ODE=90°,
    由(1)知,BD=CD,
    ∵OA=OB,
    ∴OD∥AC,
    ∴∠CED=∠ODE=90°=∠ADC,
    ∵∠C=∠C,
    ∴△CDE∽△CAD,
    ∴,
    ∴CD2=CE•AC;
    (3)∵AB=AC=5,
    由(1)知,∠ADB=90°,OA=OB,
    ∴OD=AB=,
    由(1)知,CD=BC=3,
    由(2)知,CD2=CE•AC,
    ∵AC=5,
    ∴CE=,
    ∴AE=AC-CE=5-=,
    在Rt△CDE中,根据勾股定理得,DE=,
    由(2)知,OD∥AC,
    ∴,
    ∴,
    ∴DF=.
    【点睛】
    此题是圆的综合题,主要考查了圆的性质,等腰三角形的性质,相似三角形的判断和性质,勾股定理,判断出△CDE∽△CAD是解本题的关键.
    23、(1)m=-1,n=-1;(2)y=-x+
    【解析】
    (1)由直线与双曲线相交于A(-1,a)、B两点可得B点横坐标为1,点C的坐标为(1,0),再根据△AOC的面积为1可求得点A的坐标,从而求得结果;
    (2)设直线AC的解析式为y=kx+b,由图象过点A(-1,1)、C(1,0)根据待定系数法即可求的结果.
    【详解】
    (1)∵直线与双曲线相交于A(-1,a)、B两点,
    ∴B点横坐标为1,即C(1,0)
    ∵△AOC的面积为1,
    ∴A(-1,1)
    将A(-1,1)代入,可得m=-1,n=-1;
    (2)设直线AC的解析式为y=kx+b
    ∵y=kx+b经过点A(-1,1)、C(1,0)
    ∴解得k=-,b=.
    ∴直线AC的解析式为y=-x+.
    【点睛】
    本题考查了一次函数与反比例函数图象的交点问题,此类问题是初中数学的重点,在中考中极为常见,熟练掌握待定系数法是解题关键.
    24、(1)①;②;(2)
    【解析】
    (1)①先根据等边三角形的性质的,进而得出,最后用三角形的内角和定理即可得出结论;②先判断出,得出,再判断出是底角为30度的等腰三角形,再构造出直角三角形即可得出结论;(2)同②的方法即可得出结论.
    【详解】
    (1)当时,
    ①画出的图形如图1所示,
    ∵为等边三角形,
    ∴.
    ∵为等边三角形的中线
    ∴是的垂直平分线,
    ∵为线段上的点,
    ∴.
    ∵,
    ∴,.
    ∵线段为线段绕点顺时针旋转所得,
    ∴.
    ∴.
    ∴,
    ∴;

    ②;
    如图2,延长到点,使得,连接,作于点.
    ∵,点在上,
    ∴.
    ∵点在的延长线上,,
    ∴.
    ∴.
    又∵,,
    ∴.
    ∴.
    ∵于点,
    ∴,.
    ∵在等边三角形中,为中线,点在上,
    ∴,
    即为底角为的等腰三角形.
    ∴.
    ∴.

    (2)如图3,当时,
    在上取一点使,
    ∵为等边三角形,
    ∴.
    ∵为等边三角形的中线,
    ∵为线段上的点,
    ∴是的垂直平分线,
    ∴.
    ∵,
    ∴,.
    ∵线段为线段绕点顺时针旋转所得,
    ∴.
    ∴.
    ∴,
    又∵,,
    ∴.
    ∴.
    ∵于点,
    ∴,.
    ∵在等边三角形中,为中线,点在上,
    ∴,
    ∴.
    ∴.

    【点睛】
    此题是几何变换综合题,主要考查了等边三角形的性质,三角形的内角和定理,全等三角形的判定和性质,等腰三角形的判定和性质,锐角三角函数,作出辅助线构造出全等三角形是解本题的关键.

    相关试卷

    安徽省无为市市级名校2022年毕业升学考试模拟卷数学卷含解析:

    这是一份安徽省无为市市级名校2022年毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了计算3–,二次函数y=ax2+bx+c,已知电流I等内容,欢迎下载使用。

    2022年安徽省含山县毕业升学考试模拟卷数学卷含解析:

    这是一份2022年安徽省含山县毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了的相反数是等内容,欢迎下载使用。

    2022届安徽省临泉毕业升学考试模拟卷数学卷含解析:

    这是一份2022届安徽省临泉毕业升学考试模拟卷数学卷含解析,共21页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map