2022届成都市金堂县金龙中学初中数学毕业考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.在平面直角坐标系中,位于第二象限的点是( )
A.(﹣1,0) B.(﹣2,﹣3) C.(2,﹣1) D.(﹣3,1)
2.老师在微信群发了这样一个图:以线段AB为边作正五边形ABCDE和正三角形ABG,连接AC、DG,交点为F,下列四位同学的说法不正确的是( )
A.甲 B.乙 C.丙 D.丁
3.下列几何体中,其三视图都是全等图形的是( )
A.圆柱 B.圆锥 C.三棱锥 D.球
4.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( )
A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6
5.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十
.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为( )
A. B.
C. D.
6.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为( )
A.30° B.45°
C.90° D.135°
7.下面说法正确的个数有( )
①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;
②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;
③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;
④如果∠A=∠B=∠C,那么△ABC是直角三角形;
⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;
⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.
A.3个 B.4个 C.5个 D.6个
8.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )
A. B. C. D.
9.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:
①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④当1<x<3时,x2+(b﹣1)x+c<1.
其中正确的个数为
A.1 B.2 C.3 D.4
10.下列运算正确的是( )
A.a﹣3a=2a B.(ab2)0=ab2 C.= D.×=9
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_______.
12.若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是______.
13.我们知道方程组的解是,现给出另一个方程组,它的解是____.
14.函数y= 中,自变量x的取值范围是 _____.
15.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是_____.
16.要使式子有意义,则的取值范围是__________.
三、解答题(共8题,共72分)
17.(8分)已知抛物线y=x2﹣6x+9与直线y=x+3交于A,B两点(点A在点B的左侧),抛物线的顶点为C,直线y=x+3与x轴交于点D.
(1)求抛物线的顶点C的坐标及A,B两点的坐标;
(2)将抛物线y=x2﹣6x+9向上平移1个单位长度,再向左平移t(t>0)个单位长度得到新抛物线,若新抛物线的顶点E在△DAC内,求t的取值范围;
(3)点P(m,n)(﹣3<m<1)是抛物线y=x2﹣6x+9上一点,当△PAB的面积是△ABC面积的2倍时,求m,n的值.
18.(8分)2018年大唐芙蓉园新春灯会以“鼓舞中华”为主题,既有新年韵味,又结合“一带一路”展示了丝绸之路上古今文化经贸繁荣的盛况。小丽的爸爸买了两张门票,她和各个两人都想去观看,可是爸爸只能带一人去,于是读九年级的哥哥提议用他们3人吃饭的彩色筷子做游戏(筷子除颜色不同,其余均相同),其中小丽的筷子颜色是红色,哥哥的是银色,爸爸的是白色,将3人的3双款子全部放在 一个不透明的筷篓里摇匀,小丽随机从筷篓里取出一根,记下颜色放回,然后哥哥同样从筷篓里取出一根,若两人取出的筷子颜色相同则小丽去,若不同,则哥哥去。
(1)求小丽随机取出一根筷子是红色的概率;
(2)请用列表或画树状图的方法求出小随爸爸去看新春灯会的概率。
19.(8分)4件同型号的产品中,有1件不合格品和3件合格品.从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?
20.(8分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8000人,请估计爱吃D粽的人数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
21.(8分)如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上. 填空:∠ABC= °,BC= ;判断△ABC与△DEF是否相似,并证明你的结论.
22.(10分)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.
(1)求证:AB与⊙O相切;
(2)若等边三角形ABC的边长是4,求线段BF的长?
23.(12分)如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.求BF的长.
24.计算:sin30°•tan60°+..
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
点在第二象限的条件是:横坐标是负数,纵坐标是正数,直接得出答案即可.
【详解】
根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有C(﹣3,1)符合,故选:D.
【点睛】
本题考查点的坐标的性质,解题的关键是掌握点的坐标的性质.
2、B
【解析】
利用对称性可知直线DG是正五边形ABCDE和正三角形ABG的对称轴,再利用正五边形、等边三角形的性质一一判断即可;
【详解】
∵五边形ABCDE是正五边形,△ABG是等边三角形,
∴直线DG是正五边形ABCDE和正三角形ABG的对称轴,
∴DG垂直平分线段AB,
∵∠BCD=∠BAE=∠EDC=108°,∴∠BCA=∠BAC=36°,
∴∠DCA=72°,∴∠CDE+∠DCA=180°,∴DE∥AC,
∴∠CDF=∠EDF=∠CFD=72°,
∴△CDF是等腰三角形.
故丁、甲、丙正确.
故选B.
【点睛】
本题考查正多边形的性质、等边三角形的性质、轴对称图形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
3、D
【解析】
分析: 任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.
详解:圆柱,圆锥,三棱锥,球中,
三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,
故选D.
点睛: 本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图.
4、D
【解析】
根据平均数、中位数、众数以及方差的定义判断各选项正误即可.
【详解】
A、数据中5出现2次,所以众数为5,此选项正确;
B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;
C、平均数为(7+5+3+5+10)÷5=6,此选项正确;
D、方差为×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;
故选:D.
【点睛】
本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.
5、A
【解析】
设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.
【详解】
解:设甲的钱数为x,乙的钱数为y,
依题意,得:.
故选A.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.
6、C
【解析】
根据勾股定理求解.
【详解】
设小方格的边长为1,得,
OC=
,AO=
,AC=4,
∵OC2+AO2==16,
AC2=42=16,
∴△AOC是直角三角形,
∴∠AOC=90°.
故选C.
【点睛】
考点:勾股定理逆定理.
7、C
【解析】
试题分析:①∵三角形三个内角的比是1:2:3,
∴设三角形的三个内角分别为x,2x,3x,
∴x+2x+3x=180°,解得x=30°,
∴3x=3×30°=90°,
∴此三角形是直角三角形,故本小题正确;
②∵三角形的一个外角与它相邻的一个内角的和是180°,
∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;
③∵直角三角形的三条高的交点恰好是三角形的一个顶点,
∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;
④∵∠A=∠B=∠C,
∴设∠A=∠B=x,则∠C=2x,
∴x+x+2x=180°,解得x=45°,
∴2x=2×45°=90°,
∴此三角形是直角三角形,故本小题正确;
⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,
∴三角形一个内角也等于另外两个内角的和,
∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,
∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;
⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,
由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,
∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.
故选D.
考点:1.三角形内角和定理;2.三角形的外角性质.
8、B
【解析】
解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;
当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
故选B.
9、B
【解析】
分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<1;故①错误。
当x=1时,y=1+b+c=1,故②错误。
∵当x=3时,y=9+3b+c=3,∴3b+c+6=1。故③正确。
∵当1<x<3时,二次函数值小于一次函数值,
∴x2+bx+c<x,∴x2+(b﹣1)x+c<1。故④正确。
综上所述,正确的结论有③④两个,故选B。
10、D
【解析】
直接利用合并同类项法则以及二次根式的性质、二次根式乘法、零指数幂的性质分别化简得出答案.
【详解】
解:A、a﹣3a=﹣2a,故此选项错误;
B、(ab2)0=1,故此选项错误;
C、故此选项错误;
D、×=9,正确.
故选D.
【点睛】
此题主要考查了合并同类项以及二次根式的性质、二次根式乘法、零指数幂的性质,正确把握相关性质是解题关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
试题解析:∵两个同心圆被等分成八等份,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的四等份,
∴P(飞镖落在白色区域)=.
12、8
【解析】
解:设边数为n,由题意得,
180(n-2)=3603
解得n=8.
所以这个多边形的边数是8.
13、
【解析】
观察两个方程组的形式与联系,可得第二个方程组中,解之即可.
【详解】
解:由题意得,
解得.
故答案为:.
【点睛】
本题考查了二元一次方程组的解,用整体代入法解决这种问题比较方便.
14、x≠﹣.
【解析】
该函数是分式,分式有意义的条件是分母不等于1,故分母x﹣1≠1,解得x的范围.
【详解】
解:根据分式有意义的条件得:2x+3≠1
解得:
故答案为
【点睛】
本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足分母不等于1.
15、35°
【解析】
分析:先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°-∠3代入数据进行计算即可得解.
详解:∵直尺的两边互相平行,∠1=25°,
∴∠3=∠1=25°,
∴∠2=60°-∠3=60°-25°=35°.
故答案为35°.
点睛:本题考查了平行线的性质,三角板的知识,熟记平行线的性质是解题的关键.
16、
【解析】
根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.
【详解】
由题意得:
2-x≥0,
解得:x≤2,
故答案为x≤2.
三、解答题(共8题,共72分)
17、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.
【解析】
分析:(Ⅰ)将抛物线的一般式配方为顶点式即可求出点C的坐标,联立抛物线与直线的解析式即可求出A、B的坐标.
(Ⅱ)由题意可知:新抛物线的顶点坐标为(2﹣t,1),然后求出直线AC的解析式后,将点E的坐标分别代入直线AC与AD的解析式中即可求出t的值,从而可知新抛物线的顶点E在△DAC内,求t的取值范围.
(Ⅲ)直线AB与y轴交于点F,连接CF,过点P作PM⊥AB于点M,PN⊥x轴于点N,交DB于点G,由直线y=x+2与x轴交于点D,与y轴交于点F,得D(﹣2,0),F(0,2),易得CF⊥AB,△PAB的面积是△ABC面积的2倍,所以AB•PM=AB•CF,PM=2CF=1,从而可求出PG=3,利用点G在直线y=x+2上,P(m,n),所以G(m,m+2),所以PG=n﹣(m+2),所以n=m+4,由于P(m,n)在抛物线y=x2﹣1x+9上,联立方程从而可求出m、n的值.
详解:(I)∵y=x2﹣1x+9=(x﹣2)2,∴顶点坐标为(2,0).
联立,
解得:或;
(II)由题意可知:新抛物线的顶点坐标为(2﹣t,1),设直线AC的解析式为y=kx+b
将A(1,4),C(2,0)代入y=kx+b中,∴,
解得:,
∴直线AC的解析式为y=﹣2x+1.
当点E在直线AC上时,﹣2(2﹣t)+1=1,解得:t=.
当点E在直线AD上时,(2﹣t)+2=1,解得:t=5,
∴当点E在△DAC内时,<t<5;
(III)如图,直线AB与y轴交于点F,连接CF,过点P作PM⊥AB于点M,PN⊥x轴于点N,交DB于点G.
由直线y=x+2与x轴交于点D,与y轴交于点F,
得D(﹣2,0),F(0,2),∴OD=OF=2.
∵∠FOD=90°,∴∠OFD=∠ODF=45°.
∵OC=OF=2,∠FOC=90°,
∴CF==2,∠OFC=∠OCF=45°,
∴∠DFC=∠DFO+∠OFC=45°+45°=90°,∴CF⊥AB.
∵△PAB的面积是△ABC面积的2倍,∴AB•PM=AB•CF,
∴PM=2CF=1.
∵PN⊥x轴,∠FDO=45°,∴∠DGN=45°,∴∠PGM=45°.
在Rt△PGM中,sin∠PGM=, ∴PG===3.
∵点G在直线y=x+2上,P(m,n), ∴G(m,m+2).
∵﹣2<m<1,∴点P在点G的上方,∴PG=n﹣(m+2),∴n=m+4.
∵P(m,n)在抛物线y=x2﹣1x+9上,
∴m2﹣1m+9=n,∴m2﹣1m+9=m+4,解得:m=.
∵﹣2<m<1,∴m=不合题意,舍去,∴m=,∴n=m+4=.
点睛:本题是二次函数综合题,涉及待定系数法,解方程,勾股定理,三角形的面积公式,综合程度较高,需要学生综合运用所学知识.
18、(1);(2).
【解析】
(1)直接利用概率公式计算;
(2)画树状图展示所有36种等可能的结果数,再找出两人取出的筷子颜色相同的结果数,然后根据概率公式求解.
【详解】
(1)小丽随机取出一根筷子是红色的概率==;
(2)画树状图为:
共有36种等可能的结果数,其中两人取出的筷子颜色相同的结果数为12,
所以小丽随爸爸去看新春灯会的概率==.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.
19、(1);(2);(3)x=1.
【解析】
(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;
(2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;
(3)根据频率估计出概率,利用概率公式列式计算即可求得x的值.
【详解】
解:(1)∵4件同型号的产品中,有1件不合格品,
∴P(不合格品)=;
(2)
共有12种情况,抽到的都是合格品的情况有6种,
P(抽到的都是合格品)==;
(3)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,
∴抽到合格品的概率等于0.95,
∴ =0.95,
解得:x=1.
【点睛】
本题考查利用频率估计概率;概率公式;列表法与树状图法.
20、(1)600(2)见解析
(3)3200(4)
【解析】
(1)60÷10%=600(人).
答:本次参加抽样调查的居民有600人.(2分)
(2)如图;…(5分)
(3)8000×40%=3200(人).
答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)
(4)如图;
(列表方法略,参照给分).…(8分)
P(C粽)==.
答:他第二个吃到的恰好是C粽的概率是.…(10分)
21、 (1) (2)△ABC∽△DEF.
【解析】
(1)根据已知条件,结合网格可以求出∠ABC的度数,根据,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC的长;
(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC与△DEF相似.
【详解】
(1)
故答案为
(2)△ABC∽△DEF.
证明:∵在4×4的正方形方格中,
∴∠ABC=∠DEF.
∵
∴
∴△ABC∽△DEF.
【点睛】
考查勾股定理以及相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.
22、(2)证明见试题解析;(2).
【解析】
(2)过点O作OM⊥AB于M,证明OM=圆的半径OD即可;
(2)过点O作ON⊥BE,垂足是N,连接OF,得到四边形OMBN是矩形,在直角△OBM中利用三角函数求得OM和BM的长,进而求得BN和ON的长,在直角△ONF中利用勾股定理求得NF,则BF即可求解.
【详解】
解:(2)过点O作OM⊥AB,垂足是M.
∵⊙O与AC相切于点D,
∴OD⊥AC,
∴∠ADO=∠AMO=90°.
∵△ABC是等边三角形,
∴∠DAO=∠MAO,
∴OM=OD,
∴AB与⊙O相切;
(2)过点O作ON⊥BE,垂足是N,连接OF.
∵O是BC的中点,
∴OB=2.在直角△OBM中,∠MBO=60°,
∴∠MOB=30°, BM=OB=2,
OM=BM =,
∵BE⊥AB,
∴四边形OMBN是矩形,
∴ON=BM=2,BN=OM=.
∵OF=OM=,由勾股定理得NF=.
∴BF=BN+NF=.
考点:2.切线的判定与性质;2.勾股定理;3.解直角三角形;4.综合题.
23、BF的长度是1cm.
【解析】
利用“两角法”证得△BEF∽△CDF,利用相似三角形的对应边成比例来求线段CF的长度.
【详解】
解:如图,在矩形ABCD中:∠DFC=∠EFB,∠EBF=∠FCD=90°,
∴△BEF∽△CDF;
∴=,
又∵AD=BC=260cm ,AB=CD=130cm ,AE=60cm
∴BE=70cm, CD=130cm,BC=260cm ,CF=(260-BF)cm
∴=,
解得:BF=1.
即:BF的长度是1cm.
【点睛】
本题主要考查相似三角形的判定和性质,关键要掌握:有两角对应相等的两三角形相似;两三角形相似,对应边的比相等.
24、
【解析】
试题分析:把相关的特殊三角形函数值代入进行计算即可.
试题解析:原式=.
2022-2023学年成都市金堂县金龙中学数学七下期末复习检测模拟试题含答案: 这是一份2022-2023学年成都市金堂县金龙中学数学七下期末复习检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列代数式变形正确的是等内容,欢迎下载使用。
西藏达孜中学2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份西藏达孜中学2022年初中数学毕业考试模拟冲刺卷含解析,共22页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
成都市金堂县金龙中学2022年十校联考最后数学试题含解析: 这是一份成都市金堂县金龙中学2022年十校联考最后数学试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,a的倒数是3,则a的值是,某商品的进价为每件元,下列说法不正确的是等内容,欢迎下载使用。