终身会员
搜索
    上传资料 赚现金
    2022届福建省福州市台江区重点名校中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    2022届福建省福州市台江区重点名校中考适应性考试数学试题含解析01
    2022届福建省福州市台江区重点名校中考适应性考试数学试题含解析02
    2022届福建省福州市台江区重点名校中考适应性考试数学试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届福建省福州市台江区重点名校中考适应性考试数学试题含解析

    展开
    这是一份2022届福建省福州市台江区重点名校中考适应性考试数学试题含解析,共22页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,点从矩形的顶点出发,沿以的速度匀速运动到点,图是点运动时,的面积随运动时间变化而变化的函数关系图象,则矩形的面积为( )

    A. B. C. D.
    2.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是(  )
    A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2+5
    3.如图,函数y=的图象记为c1,它与x轴交于点O和点A1;将c1绕点A1旋转180°得c2,交x轴于点A2;将c2绕点A2旋转180°得c3,交x轴于点A3…如此进行下去,若点P(103,m)在图象上,那么m的值是(  )

    A.﹣2 B.2 C.﹣3 D.4
    4.二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是( )

    A. B. C. D.
    5.下列运算正确的是(  )
    A.5ab﹣ab=4 B.a6÷a2=a4 C. D.(a2b)3=a5b3
    6.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是(  )

    A.(2010,2) B.(2010,﹣2) C.(2012,﹣2) D.(0,2)
    7.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为(  )

    A.(,0) B.(2,0) C.(,0) D.(3,0)
    8.如图,函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,AC⊥AB,且AC=AB,则点C的坐标为(  )

    A.(2,1) B.(1,2) C.(1,3) D.(3,1)
    9.对于任意实数k,关于x的方程的根的情况为
    A.有两个相等的实数根 B.没有实数根
    C.有两个不相等的实数根 D.无法确定
    10.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿舍,然后打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )

    A.经过集中喷洒药物,室内空气中的含药量最高达到
    B.室内空气中的含药量不低于的持续时间达到了
    C.当室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效
    D.当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在△ABC中,BC=8,高AD=6,矩形EFGH的一边EF在边BC上,其余两个顶点G、H分别在边AC、AB上,则矩形EFGH的面积最大值为_____.

    12.如图,在平面直角坐标系中,反比例函数y= (x>0)的图象交矩形OABC的边AB于点D,交BC于点E,且BE=2EC,若四边形ODBE的面积为8,则k=_____.

    13.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了_____米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)

    14.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.

    15.已知点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),则ab的值为_____.
    16. “五一劳动节”,王老师将全班分成六个小组开展社会实践活动,活动结束后,随机抽取一个小组进行汇报展示.第五组被抽到的概率是___.
    17.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则∠1的度数为__________

    三、解答题(共7小题,满分69分)
    18.(10分)如图,在平面直角坐标系中,抛物线与x轴交于点A、B,与y轴交于点C,直线y=x+4经过点A、C,点P为抛物线上位于直线AC上方的一个动点.
    (1)求抛物线的表达式;
    (2)如图,当CP//AO时,求∠PAC的正切值;

    (3)当以AP、AO为邻边的平行四边形第四个顶点恰好也在抛物线上时,求出此时点P的坐标.
    19.(5分)已知:如图,△MNQ中,MQ≠NQ.
    (1)请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;

    (2)参考(1)中构造全等三角形的方法解决下面问题:
    如图,在四边形ABCD中,,∠B=∠D.求证:CD=AB.

    20.(8分)如图,在平面直角坐标系中,一次函数与反比例函数的图像交于点和点,且经过点.
    求反比例函数和一次函数的表达式;求当时自变量的取值范围.
    21.(10分)在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕着点B顺时针旋转角a(0°<a<90°)得到△A1BC;A1B交AC于点E,A1C1分别交AC、BC于D、F两点.
    (1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论.
    (2)如图2,当a=30°时,试判断四边形BC1DA的形状,并证明.
    (3)在(2)的条件下,求线段DE的长度.

    22.(10分)如图,已知反比例函数和一次函数的图象相交于第一象限内的点A,且点A的横坐标为1.过点A作AB⊥x轴于点B,△AOB的面积为1.
    求反比例函数和一次函数的解析式.若一次函数的图象与x轴相交于点C,求∠ACO的度数.结合图象直接写出:当>>0时,x的取值范围.
    23.(12分)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:这项被调查的总人数是多少人?试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.

    24.(14分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;如果△ABC是等边三角形,试求这个一元二次方程的根.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,根据矩形的面积公式可求出.
    【详解】
    由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,
    ∴矩形的面积为4×8=32,
    故选:C.
    【点睛】
    本题考查动点运动问题、矩形面积等知识,根据图形理解△ABP面积变化情况是解题的关键,属于中考常考题型.
    2、A
    【解析】
    结合向左平移的法则,即可得到答案.
    【详解】
    解:将抛物线y=x2+3向左平移2个单位可得y=(x+2)2+3,
    故选A.
    【点睛】
    此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答.
    3、C
    【解析】
    求出与x轴的交点坐标,观察图形可知第奇数号抛物线都在x轴上方,然后求出到抛物线平移的距离,再根据向右平移横坐标加表示出抛物线的解析式,然后把点P的坐标代入计算即可得解.
    【详解】
    令,则=0,
    解得,

    由图可知,抛物线在x轴下方,
    相当于抛物线向右平移4×(26−1)=100个单位得到得到,再将绕点旋转180°得,
    此时的解析式为y=(x−100)(x−100−4)=(x−100)(x−104),
    在第26段抛物线上,
    m=(103−100)(103−104)=−3.
    故答案是:C.
    【点睛】
    本题考查的知识点是二次函数图象与几何变换,解题关键是根据题意得到p点所在函数表达式.
    4、D
    【解析】
    根据抛物线和直线的关系分析.
    【详解】
    由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.
    故选D
    【点睛】
    考核知识点:反比例函数图象.
    5、B
    【解析】
    根据同底数幂的除法,合并同类项,积的乘方的运算法则进行逐一运算即可.
    【详解】
    解:A、5ab﹣=4ab,此选项运算错误,
    B、a6÷a2=a4,此选项运算正确,
    C、,选项运算错误,
    D、(a2b)3=a6b3,此选项运算错误,
    故选B.
    【点睛】
    此题考查了同底数幂的除法,合并同类项,积的乘方,熟练掌握运算法则是解本题的关键.
    6、B
    【解析】
    分析:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,结合中点坐标公式即可求得点P1的坐标;同理可求得其它各点的坐标,分析可得规律,进而可得答案.
    详解:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,
    又∵A的坐标是(1,1),
    结合中点坐标公式可得P1的坐标是(1,0);
    同理P1的坐标是(1,﹣1),记P1(a1,b1),其中a1=1,b1=﹣1.
    根据对称关系,依次可以求得:
    P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),
    令P6(a6,b1),同样可以求得,点P10的坐标为(4+a6,b1),即P10(4×1+a1,b1),
    ∵1010=4×501+1,
    ∴点P1010的坐标是(1010,﹣1),
    故选:B.
    点睛:本题考查了对称的性质,坐标与图形的变化---旋转,根据条件求出前边几个点的坐标,得到规律是解题关键.
    7、C
    【解析】
    过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.
    【详解】
    解:过点B作BD⊥x轴于点D,
    ∵∠ACO+∠BCD=90°,
    ∠OAC+∠ACO=90°,
    ∴∠OAC=∠BCD,
    在△ACO与△BCD中,
    ∴△ACO≌△BCD(AAS)
    ∴OC=BD,OA=CD,
    ∵A(0,2),C(1,0)
    ∴OD=3,BD=1,
    ∴B(3,1),
    ∴设反比例函数的解析式为y=,
    将B(3,1)代入y=,
    ∴k=3,
    ∴y=,
    ∴把y=2代入y=,
    ∴x=,
    当顶点A恰好落在该双曲线上时,
    此时点A移动了个单位长度,
    ∴C也移动了个单位长度,
    此时点C的对应点C′的坐标为(,0)
    故选:C.

    【点睛】
    本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.
    8、D
    【解析】
    过点C作CD⊥x轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,则C点坐标可求.
    【详解】
    如图,过点C作CD⊥x轴与D.∵函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,∴当x=0时,y=2,则B(0,2);当y=0时,x=1,则A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,,∴△ABO≌△CAD,∴AD=OB=2,CD=OA=1,∴OD=OA+AD=1+2=3,∴C点坐标为(3,1).故选D.

    【点睛】
    本题主要考查一次函数的基本概念。角角边定理、全等三角形的性质以及一次函数的应用,熟练掌握相关知识点是解答的关键.
    9、C
    【解析】
    判断一元二次方程的根的情况,只要看根的判别式的值的符号即可:
    ∵a=1,b=,c=,
    ∴.
    ∴此方程有两个不相等的实数根.故选C.
    10、C
    【解析】
    利用图中信息一一判断即可.
    【详解】
    解: A、正确.不符合题意.
    B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;
    C、y=5时,x=2.5或24,24-2.5=21.5<35,故本选项错误,符合题意;
    D、正确.不符合题意,
    故选C.
    【点睛】
    本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    设HG=x,根据相似三角形的性质用x表示出KD,根据矩形面积公式列出二次函数解析式,根据二次函数的性质计算即可.
    【详解】
    解:设HG=x.
    ∵四边形EFGH是矩形,∴HG∥BC,∴△AHG∽△ABC,∴=,即=,解得:KD=6﹣x,则矩形EFGH的面积=x(6﹣x)=﹣x2+6x=(x﹣4)2+1,则矩形EFGH的面积最大值为1.
    故答案为1.
    【点睛】
    本题考查的是相似三角形的判定和性质、二次函数的性质,掌握相似三角形的判定定理和性质定理是解题的关键.
    12、1
    【解析】
    连接OB,由矩形的性质和已知条件得出△OBD的面积=△OBE的面积=四边形ODBE的面积,再求出△OCE的面积为2,即可得出k的值.
    【详解】
    连接OB,如图所示:
    ∵四边形OABC是矩形,
    ∴∠OAD=∠OCE=∠DBE=90°,△OAB的面积=△OBC的面积,
    ∵D、E在反比例函数y=(x>0)的图象上,
    ∴△OAD的面积=△OCE的面积,
    ∴△OBD的面积=△OBE的面积=四边形ODBE的面积=1,
    ∵BE=2EC,
    ∴△OCE的面积=△OBE的面积=2,
    ∴k=1.

    故答案为:1.
    【点睛】
    本题考查了反比例函数的系数k的几何意义:在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是 |k|,且保持不变.
    13、1.
    【解析】
    试题解析:在RtΔABC中,sin34°=
    ∴AC=AB×sin34°=500×0.56=1米.
    故答案为1.
    14、40°
    【解析】
    直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.
    【详解】
    如图所示:

    ∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,
    ∵∠1+∠2+∠3+∠4=220°,
    ∴∠1+∠2+∠6+∠3+∠4+∠7=360°,
    ∴∠6+∠7=140°,
    ∴∠5=180°-(∠6+∠7)=40°.
    故答案为40°.
    【点睛】
    主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.
    15、2
    【解析】
    根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出ab的值即可.
    【详解】
    ∵点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),
    ∴a+b=-3,-1-b=1;
    解得a=-1,b=-2,
    ∴ab=2.
    故答案为2.
    【点睛】
    本题考查了关于x轴,y轴对称的点的坐标,解题的关键是熟练的掌握关于y轴对称的点的坐标的性质.
    16、
    【解析】
    根据概率是所求情况数与总情况数之比,可得答案.
    【详解】
    因为共有六个小组,
    所以第五组被抽到的概率是,
    故答案为:.
    【点睛】
    本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.
    17、75°
    【解析】
    先根据同旁内角互补,两直线平行得出AC∥DF,再根据两直线平行内错角相等得出∠2=∠A=45°,然后根据三角形内角与外角的关系可得∠1的度数.
    【详解】
    ∵∠ACB=∠DFE=90°,∴∠ACB+∠DFE=180°,∴AC∥DF,∴∠2=∠A=45°,∴∠1=∠2+∠D=45°+30°=75°.
    故答案为:75°.

    【点睛】
    本题考查了平行线的判定与性质,三角形外角的性质,求出∠2=∠A=45°是解题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)抛物线的表达式为;(2);(3)P点的坐标是.
    【解析】
    分析:
    (1)由题意易得点A、C的坐标分别为(-1,0),(0,1),将这两点坐标代入抛物线列出方程组,解得b、c的值即可求得抛物线的解析式;
    (2)如下图,作PH⊥AC于H,连接OP,由已知条件先求得PC=2,AC=,结合S△APC,可求得PH=,再由OA=OC得到∠CAO=15°,结合CP∥OA可得∠PCA=15°,即可得到CH=PH=,由此可得AH=,这样在Rt△APH中由tan∠PAC=即可求得所求答案了;
    (3)如图,当四边形AOPQ为符合要求的平行四边形时,则此时PQ=AO=1,且点P、Q关于抛物线的对称轴x=-1对称,由此可得点P的横坐标为-3,代入抛物线解析即可求得此时的点P的坐标.
    详解:
    (1)∵直线y=x+1经过点A、C,点A在x轴上,点C在y轴上
    ∴A点坐标是(﹣1,0),点C坐标是(0,1),
    又∵抛物线过A,C两点,

    解得,
    ∴抛物线的表达式为;
    (2)作PH⊥AC于H,
    ∵点C、P在抛物线上,CP//AO, C(0,1),A(-1,0)
    ∴P(-2,1),AC=,
    ∴PC=2,,
    ∴PH=,
    ∵A(﹣1,0),C(0,1),
    ∴∠CAO=15°.
    ∵CP//AO,
    ∴∠ACP=∠CAO=15°,
    ∵PH⊥AC,
    ∴CH=PH=,
    ∴.
    ∴;

    (3)∵,
    ∴抛物线的对称轴为直线,
    ∵以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,
    ∴PQ∥AO,且PQ=AO=1.
    ∵P,Q都在抛物线上,
    ∴P,Q关于直线对称,
    ∴P点的横坐标是﹣3,
    ∵当x=﹣3时,,
    ∴P点的坐标是.

    点睛:(1)解第2小题的关键是:作出如图所示的辅助线,构造出Rt△APH,并结合题中的已知条件求出PH和AH的长;(2)解第3小题的关键是:根据题意画出符合要求的示意图,并由PQ∥AO,PQ=AO及P、Q关于抛物线的对称轴对称得到点P的横坐标.
    【详解】
    请在此输入详解!
    19、(1)作图见解析;(2)证明书见解析.
    【解析】
    (1)以点N为圆心,以MQ长度为半径画弧,以点M为圆心,以NQ长度为半径画弧,两弧交于一点F,则△MNF为所画三角形.
    (2)延长DA至E,使得AE=CB,连结CE.证明△EAC≌△BCA,得:∠B =∠E,AB=CE,根据等量代换可以求得答案.
    【详解】
    解:(1)如图1,以N 为圆心,以MQ 为半径画圆弧;以M 为圆心,以NQ 为半径画圆弧;两圆弧的交点即为所求.

    (2)如图,延长DA至E,使得AE=CB,连结CE.
    ∵∠ACB +∠CAD =180°,∠DACDAC +∠EAC =180°,∴∠BACBCA =∠EAC.
    在△EAC和△BAC中,AE=CE,AC=CA,∠EAC=∠BCN,
    ∴△AECEAC≌△BCA (SAS).∴∠B=∠E,AB=CE.
    ∵∠B=∠D,∴∠D=∠E.∴CD=CE,∴CD=AB.

    考点:1.尺规作图;2.全等三角形的判定和性质.
    20、 (1) ,;(2)或.
    【解析】
    (1)把点A坐标代入可求出m的值即可得反比例函数解析式;把点A、点C代入可求出k、b的值,即可得一次函数解析式;(2)联立一次函数和反比例函数解析式可求出点B的坐标,根据图象,求出一次函数图象在反比例函数图象的上方时,x的取值范围即可.
    【详解】
    (1)把代入得.
    ∴反比例函数的表达式为
    把和代入得,
    解得
    ∴一次函数的表达式为.
    (2)由得
    ∴当或时,.
    【点睛】
    本题考查了一次函数和反比例函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式.求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点.
    21、(1)(2)四边形是菱形.(3)
    【解析】
    (1)根据等边对等角及旋转的特征可得即可证得结论;
    (2)先根据两组对边分别平行的四边形是平行四边形,再得到邻边相等即可判断结论;
    (3)过点E作于点G,解可得AE的长,结合菱形的性质即可求得结果.
    【详解】
    (1)
    证明:(证法一)
    由旋转可知,

    ∴又
    ∴即
    (证法二)
    由旋转可知,而

    ∴∴

    (2)四边形是菱形.
    证明:同理
    ∴四边形是平行四边形.
    又∴四边形是菱形
    (3)过点作于点,则
    在中,

    .由(2)知四边形是菱形,


    【点睛】
    解答本题的关键是掌握好旋转的性质,平行四边形判定与性质,的菱形的判定与性质,选择适当的条件解决问题.
    22、(1)y=;y=x+1;(2)∠ACO=45°;(3)0 【解析】
    (1)根据△AOB的面积可求AB,得A点坐标.从而易求两个函数的解析式;
    (2)求出C点坐标,在△ABC中运用三角函数可求∠ACO的度数;
    (3)观察第一象限内的图形,反比例函数的图象在一次函数的图象的上面部分对应的x的值即为取值范围.
    【详解】
    (1)∵△AOB的面积为1,并且点A在第一象限,
    ∴k=2,∴y=;
    ∵点A的横坐标为1,
    ∴A(1,2).
    把A(1,2)代入y=ax+1得,a=1.
    ∴y=x+1.
    (2)令y=0,0=x+1,
    ∴x=−1,
    ∴C(−1,0).
    ∴OC=1,BC=OB+OC=2.
    ∴AB=CB,
    ∴∠ACO=45°.
    (3)由图象可知,在第一象限,当y>y>0时,0 在第三象限,当y>y>0时,−1 【点睛】
    此题考查反比例函数与一次函数的交点问题,解题关键在于结合函数图象进行解答.
    23、(1)50;(2)108°;(3).
    【解析】
    分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案.
    本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.
    (2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=.

    点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
    24、 (1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.
    【解析】
    试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;
    (2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;
    (3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.
    试题解析:(1)△ABC是等腰三角形;
    理由:∵x=﹣1是方程的根,
    ∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,
    ∴a+c﹣2b+a﹣c=0,
    ∴a﹣b=0,
    ∴a=b,
    ∴△ABC是等腰三角形;
    (2)∵方程有两个相等的实数根,
    ∴(2b)2﹣4(a+c)(a﹣c)=0,
    ∴4b2﹣4a2+4c2=0,
    ∴a2=b2+c2,
    ∴△ABC是直角三角形;
    (3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:
    2ax2+2ax=0,
    ∴x2+x=0,
    解得:x1=0,x2=﹣1.
    考点:一元二次方程的应用.

    相关试卷

    2023年福建省福州市台江区江南重点中学中考数学模拟试卷(6月份)(含解析): 这是一份2023年福建省福州市台江区江南重点中学中考数学模拟试卷(6月份)(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年福建省福州市台江区鳌峰学校中考数学模拟试卷(含解析): 这是一份2023年福建省福州市台江区鳌峰学校中考数学模拟试卷(含解析),共24页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2022年青岛市重点达标名校中考适应性考试数学试题含解析: 这是一份2022年青岛市重点达标名校中考适应性考试数学试题含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map