终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022届福建省泉州市晋江市中考猜题数学试卷含解析

    立即下载
    加入资料篮
    2022届福建省泉州市晋江市中考猜题数学试卷含解析第1页
    2022届福建省泉州市晋江市中考猜题数学试卷含解析第2页
    2022届福建省泉州市晋江市中考猜题数学试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届福建省泉州市晋江市中考猜题数学试卷含解析

    展开

    这是一份2022届福建省泉州市晋江市中考猜题数学试卷含解析,共21页。试卷主要包含了化简÷的结果是,下列各式正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列图形中,不是轴对称图形的是(  )
    A. B. C. D.
    2.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=﹣2实数根的情况是 ( )
    A.有三个实数根 B.有两个实数根 C.有一个实数根 D.无实数根
    3.如图,内接于,若,则  

    A. B. C. D.
    4.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )
    A. B. C. D.
    5.化简÷的结果是( )
    A. B. C. D.2(x+1)
    6.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确的是(  )
    A.若这5次成绩的中位数为8,则x=8
    B.若这5次成绩的众数是8,则x=8
    C.若这5次成绩的方差为8,则x=8
    D.若这5次成绩的平均成绩是8,则x=8
    7.下列等式从左到右的变形,属于因式分解的是
    A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)
    C.4x2+8x-4=4x D.4my-2=2(2my-1)
    8.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是(  )

    A.一次性购买数量不超过10本时,销售价格为20元/本
    B.a=520
    C.一次性购买10本以上时,超过10本的那部分书的价格打八折
    D.一次性购买20本比分两次购买且每次购买10本少花80元
    9.下列各式正确的是( )
    A. B.
    C. D.
    10.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是(  )

    A.50,50 B.50,30 C.80,50 D.30,50
    二、填空题(共7小题,每小题3分,满分21分)
    11.二次函数y=ax2+bx+c(a≠0)的部分对应值如下表:
    x

    ﹣3
    ﹣2
    0
    1
    3
    5

    y

    7
    0
    ﹣8
    ﹣9
    ﹣5
    7

    则二次函数y=ax2+bx+c在x=2时,y=______.
    12.计算:2a×(﹣2b)=_____.
    13.方程的两个根为、,则的值等于______.
    14.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[1.3]=1,(1.3)=3,[1.3)=1.则下列说法正确的是________.(写出所有正确说法的序号)
    ①当x=1.7时,[x]+(x)+[x)=6;
    ②当x=﹣1.1时,[x]+(x)+[x)=﹣7;
    ③方程4[x]+3(x)+[x)=11的解为1<x<1.5;
    ④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.
    15.计算:________.
    16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.

    17.若,,则代数式的值为__________.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.求证:∠C=90°;当BC=3,sinA=时,求AF的长.

    19.(5分)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连结AE.
    (1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;
    (2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.
    (3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.
    ①求∠CAM的度数;
    ②当FH=,DM=4时,求DH的长.

    20.(8分)在围棋盒中有 x 颗黑色棋子和 y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是;如果往盒中再放进 10 颗黑色棋子,则取得黑色棋子的概率变为.求 x 和 y 的值.
    21.(10分)某渔业养殖场,对每天打捞上来的鱼,一部分由工人运到集贸市场按10元/斤销售,剩下的全部按3元/斤的购销合同直接包销给外面的某公司:养殖场共有30名工人,每名工人只能参与打捞与到集贸市场销售中的一项工作,且每人每天可以打捞鱼100斤或销售鱼50斤,设安排x名员工负责打捞,剩下的负责到市场销售.
    (1)若养殖场一天的总销售收入为y元,求y与x的函数关系式;
    (2)若合同要求每天销售给外面某公司的鱼至少200斤,在遵守合同的前提下,问如何分配工人,才能使一天的销售收入最大?并求出最大值.
    22.(10分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.
    (1)求证:;
    (2)若△OCP与△PDA的面积比为1:4,求边AB的长.

    23.(12分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
    求证:△ABM∽△EFA;若AB=12,BM=5,求DE的长.
    24.(14分)在平面直角坐标系中,某个函数图象上任意两点的坐标分别为(﹣t,y1)和(t,y2)(其中t为常数且t>0),将x<﹣t的部分沿直线y=y1翻折,翻折后的图象记为G1;将x>t的部分沿直线y=y2翻折,翻折后的图象记为G2,将G1和G2及原函数图象剩余的部分组成新的图象G.
    例如:如图,当t=1时,原函数y=x,图象G所对应的函数关系式为y=.

    (1)当t=时,原函数为y=x+1,图象G与坐标轴的交点坐标是  .
    (2)当t=时,原函数为y=x2﹣2x
    ①图象G所对应的函数值y随x的增大而减小时,x的取值范围是  .
    ②图象G所对应的函数是否有最大值,如果有,请求出最大值;如果没有,请说明理由.
    (3)对应函数y=x2﹣2nx+n2﹣3(n为常数).
    ①n=﹣1时,若图象G与直线y=2恰好有两个交点,求t的取值范围.
    ②当t=2时,若图象G在n2﹣2≤x≤n2﹣1上的函数值y随x的增大而减小,直接写出n的取值范围.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    观察四个选项图形,根据轴对称图形的概念即可得出结论.
    【详解】
    根据轴对称图形的概念,可知:选项A中的图形不是轴对称图形.
    故选A.
    【点睛】
    此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.
    2、C
    【解析】
    试题分析:由得,,即是判断函数与函数的图象的交点情况.



    因为函数与函数的图象只有一个交点
    所以方程只有一个实数根
    故选C.
    考点:函数的图象
    点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.
    3、B
    【解析】
    根据圆周角定理求出,根据三角形内角和定理计算即可.
    【详解】
    解:由圆周角定理得,,


    故选:B.
    【点睛】
    本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键.
    4、D
    【解析】
    先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.
    【详解】
    随机掷一枚均匀的硬币两次,落地后情况如下:

    至少有一次正面朝上的概率是,
    故选:D.
    【点睛】
    本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
    5、A
    【解析】
    原式利用除法法则变形,约分即可得到结果.
    【详解】
    原式=•(x﹣1)=.
    故选A.
    【点睛】
    本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键.
    6、D
    【解析】
    根据中位数的定义判断A;根据众数的定义判断B;根据方差的定义判断C;根据平均数的定义判断D.
    【详解】
    A、若这5次成绩的中位数为8,则x为任意实数,故本选项错误;
    B、若这5次成绩的众数是8,则x为不是7与9的任意实数,故本选项错误;
    C、如果x=8,则平均数为(8+9+7+8+8)=8,方差为 [3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本选项错误;
    D、若这5次成绩的平均成绩是8,则(8+9+7+8+x)=8,解得x=8,故本选项正确;
    故选D.
    【点睛】
    本题考查中位数、众数、平均数和方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    7、D
    【解析】
    根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
    【详解】
    解:A、是整式的乘法,故A不符合题意;
    B、没把一个多项式转化成几个整式积的形式,故B不符合题意;
    C、没把一个多项式转化成几个整式积的形式,故C不符合题意;
    D、把一个多项式转化成几个整式积的形式,故D符合题意;
    故选D.
    【点睛】
    本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.
    8、D
    【解析】
    A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.
    【详解】
    解:A、∵200÷10=20(元/本),
    ∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;
    C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,
    ∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;
    B、∵200+16×(30﹣10)=520(元),
    ∴a=520,B选项正确;
    D、∵200×2﹣200﹣16×(20﹣10)=40(元),
    ∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.
    故选D.
    【点睛】
    考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.
    9、A
    【解析】
    ∵,则B错;,则C;,则D错,故选A.
    10、A
    【解析】
    分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解.
    详解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元).
    故选A.
    点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.

    二、填空题(共7小题,每小题3分,满分21分)
    11、﹣1
    【解析】
    试题分析:观察表中的对应值得到x=﹣3和x=5时,函数值都是7,则根据抛物线的对称性得到对称轴为直线x=1,所以x=0和x=2时的函数值相等,
    解:∵x=﹣3时,y=7;x=5时,y=7,
    ∴二次函数图象的对称轴为直线x=1,
    ∴x=0和x=2时的函数值相等,
    ∴x=2时,y=﹣1.
    故答案为﹣1.
    12、﹣4ab
    【解析】
    根据单项式与单项式的乘法解答即可.
    【详解】
    2a×(﹣2b)=﹣4ab.
    故答案为﹣4ab.
    【点睛】
    本题考查了单项式的乘法,关键是根据单项式的乘法法则解答.
    13、1.
    【解析】
    根据一元二次方程根与系数的关系求解即可.
    【详解】
    解:根据题意得,,
    所以===1.
    故答案为1.
    【点睛】
    本题考查了根与系数的关系:若、是一元二次方程(a≠0)的两根时,,.
    14、②③
    【解析】
    试题解析:①当x=1.7时,
    [x]+(x)+[x)
    =[1.7]+(1.7)+[1.7)=1+1+1=5,故①错误;
    ②当x=﹣1.1时,
    [x]+(x)+[x)
    =[﹣1.1]+(﹣1.1)+[﹣1.1)
    =(﹣3)+(﹣1)+(﹣1)=﹣7,故②正确;
    ③当1<x<1.5时,
    4[x]+3(x)+[x)
    =4×1+3×1+1
    =4+6+1
    =11,故③正确;
    ④∵﹣1<x<1时,
    ∴当﹣1<x<﹣0.5时,y=[x]+(x)+x=﹣1+0+x=x﹣1,
    当﹣0.5<x<0时,y=[x]+(x)+x=﹣1+0+x=x﹣1,
    当x=0时,y=[x]+(x)+x=0+0+0=0,
    当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,
    当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,
    ∵y=4x,则x﹣1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,
    ∴当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,
    故答案为②③.
    考点:1.两条直线相交或平行问题;1.有理数大小比较;3.解一元一次不等式组.
    15、
    【解析】
    根据二次根式的运算法则先算乘法,再将分母有理化,然后相加即可.
    【详解】
    解:原式=
    =
    【点睛】
    本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    16、1
    【解析】
    分析:类比于现在我们的十进制“满十进一”,可以表示满六进一的数为:万位上的数×64+千位上的数×63+百位上的数×62+十位上的数×6+个位上的数,即1×64+2×63+3×62+0×6+2=1.
    详解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1,
    故答案为:1.
    点睛:本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.
    17、-12
    【解析】
    分析:对所求代数式进行因式分解,把,,代入即可求解.
    详解:,,

    故答案为:
    点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)见解析(2)
    【解析】
    (1)连接OE,BE,因为DE=EF,所以=,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;
    (2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=从而可求出r的值.
    【详解】
    解:(1)连接OE,BE,
    ∵DE=EF,
    ∴=
    ∴∠OBE=∠DBE
    ∵OE=OB,
    ∴∠OEB=∠OBE
    ∴∠OEB=∠DBE,
    ∴OE∥BC
    ∵⊙O与边AC相切于点E,
    ∴OE⊥AC
    ∴BC⊥AC
    ∴∠C=90°
    (2)在△ABC,∠C=90°,BC=3,sinA=,
    ∴AB=5,
    设⊙O的半径为r,则AO=5﹣r,
    在Rt△AOE中,sinA=



    【点睛】
    本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.
    19、(1)证明见解析;(2)结论:成立.理由见解析;(3)①30°,②1+.
    【解析】
    (1)只要证明AB=ED,AB∥ED即可解决问题;(2)成立.如图2中,过点M作MG∥DE交CE于G.由四边形DMGE是平行四边形,推出ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,可知AB∥DE,AB=DE,即可推出四边形ABDE是平行四边形;
    (3)①如图3中,取线段HC的中点I,连接MI,只要证明MI=AM,MI⊥AC,即可解决问题;②设DH=x,则AH= x,AD=2x,推出AM=4+2x,BH=4+2x,由四边形ABDE是平行四边形,推出DF∥AB,推出 ,可得,解方程即可;
    【详解】
    (1)证明:如图1中,

    ∵DE∥AB,
    ∴∠EDC=∠ABM,
    ∵CE∥AM,
    ∴∠ECD=∠ADB,
    ∵AM是△ABC的中线,且D与M重合,
    ∴BD=DC,
    ∴△ABD≌△EDC,
    ∴AB=ED,∵AB∥ED,
    ∴四边形ABDE是平行四边形.
    (2)结论:成立.理由如下:
    如图2中,过点M作MG∥DE交CE于G.

    ∵CE∥AM,
    ∴四边形DMGE是平行四边形,
    ∴ED=GM,且ED∥GM,
    由(1)可知AB=GM,AB∥GM,
    ∴AB∥DE,AB=DE,
    ∴四边形ABDE是平行四边形.
    (3)①如图3中,取线段HC的中点I,连接MI,

    ∵BM=MC,
    ∴MI是△BHC的中位线,
    ∴MI∥BH,MI=BH,
    ∵BH⊥AC,且BH=AM.
    ∴MI=AM,MI⊥AC,
    ∴∠CAM=30°.
    ②设DH=x,则AH=x,AD=2x,
    ∴AM=4+2x,
    ∴BH=4+2x,
    ∵四边形ABDE是平行四边形,
    ∴DF∥AB,
    ∴,
    ∴,
    解得x=1+或1﹣(舍弃),
    ∴DH=1+.
    【点睛】
    本题考查了四边形综合题、平行四边形的判定和性质、直角三角形30度角的判定、平行线分线成比例定理、三角形的中位线定理等知识,解题的关键能正确添加辅助线,构造特殊四边形解决问题.
    20、x=15,y=1
    【解析】
    根据概率的求法:在围棋盒中有x颗黑色棋子和y颗白色棋子,共x+y颗棋子,如果它是黑色棋子的概率是,有成立.化简可得y与x的函数关系式;
    (2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y颗棋子,则取得黑色棋子的概率变为,结合(1)的条件,可得,解可得x=15,y=1.
    【详解】
    依题意得,

    化简得,,
    解得, .,
    检验当x=15,y=1时,,,
    ∴x=15,y=1是原方程的解,经检验,符合题意.
    答:x=15,y=1.
    【点睛】
    此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    21、(1)y=﹣50x+10500;(2)安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.
    【解析】
    (1)根据题意可以得到y关于x的函数解析式,本题得以解决;
    (2)根据题意可以得到x的不等式组,从而可以求得x的取值范围,从而可以得到y的最大值,本题得以解决.
    【详解】
    (1)由题意可得,
    y=10×50(30﹣x)+3[100x﹣50(30﹣x)]=﹣50x+10500,
    即y与x的函数关系式为y=﹣50x+10500;
    (2)由题意可得,,得x,
    ∵x是整数,y=﹣50x+10500,
    ∴当x=12时,y取得最大值,此时,y=﹣50×12+10500=9900,30﹣x=18,
    答:安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.
    【点睛】
    本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.
    22、 (1)详见解析;(2)10.
    【解析】
    ①只需证明两对对应角分别相等可得两个三角形相似;故.
    ②根据相似三角形的性质求出PC长以及AP与OP的关系,然后在Rt△PCO中运用勾股定理求出OP长,从而求出AB长.
    【详解】
    ①∵四边形ABCD是矩形,
    ∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.
    由折叠可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B.
    ∴∠APO=90°.
    ∴∠APD=90°−∠CPO=∠POC.
    ∵∠D=∠C,∠APD=∠POC.
    ∴△OCP∽△PDA.
    ∴.
    ②∵△OCP与△PDA的面积比为1:4,
    ∴OCPD=OPPA=CPDA=14−−√=12.
    ∴PD=2OC,PA=2OP,DA=2CP.
    ∵AD=8,
    ∴CP=4,BC=8.
    设OP=x,则OB=x,CO=8−x.
    在△PCO中,
    ∵∠C=90∘,CP=4,OP=x,CO=8−x,
    ∴x2=(8−x)2+42.
    解得:x=5.
    ∴AB=AP=2OP=10.
    ∴边AB的长为10.
    【点睛】
    本题考查了相似三角形的判定与性质以及翻转变换,解题的关键是熟练的掌握相似三角形与翻转变换的相关知识.
    23、(1)见解析;(2)4.1
    【解析】
    试题分析:(1)由正方形的性质得出AB=AD,∠B=10°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;
    (2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.
    试题解析:(1)∵四边形ABCD是正方形,
    ∴AB=AD,∠B=10°,AD∥BC,
    ∴∠AMB=∠EAF,
    又∵EF⊥AM,
    ∴∠AFE=10°,
    ∴∠B=∠AFE,
    ∴△ABM∽△EFA;
    (2)∵∠B=10°,AB=12,BM=5,
    ∴AM==13,AD=12,
    ∵F是AM的中点,
    ∴AF=AM=6.5,
    ∵△ABM∽△EFA,
    ∴,
    即,
    ∴AE=16.1,
    ∴DE=AE-AD=4.1.
    考点:1.相似三角形的判定与性质;2.正方形的性质.
    24、(1)(2,0);(2)①﹣≤x≤1或x≥;②图象G所对应的函数有最大值为;(3)①;②n≤或n≥.
    【解析】
    (1)根据题意分别求出翻转之后部分的表达式及自变量的取值范围,将y=0代入,求出x值,即可求出图象G与坐标轴的交点坐标;
    (2)画出函数草图,求出翻转点和函数顶点的坐标,①根据图象的增减性可求出y随x的增大而减小时,x的取值范围,②根据图象很容易计算出函数最大值;
    (3)①将n=﹣1代入到函数中求出原函数的表达式,计算y=2时,x的值.据(2)中的图象,函数与y=2恰好有两个交点时t大于右边交点的横坐标且-t大于左边交点的横坐标,据此求解.
    ②画出函数草图,分别计算函数左边的翻转点A,右边的翻转点C,函数的顶点B的横坐标(可用含n的代数式表示),根据函数草图以及题意列出关于n的不等式求解即可.
    【详解】
    (1)当x=时,y=,
    当x≥时,翻折后函数的表达式为:y=﹣x+b,将点(,)坐标代入上式并解得:
    翻折后函数的表达式为:y=﹣x+2,
    当y=0时,x=2,即函数与x轴交点坐标为:(2,0);
    同理沿x=﹣翻折后当时函数的表达式为:y=﹣x,
    函数与x轴交点坐标为:(0,0),因为所以舍去.
    故答案为:(2,0);
    (2)当t=时,由函数为y=x2﹣2x构建的新函数G的图象,如下图所示:

    点A、B分别是t=﹣、t=的两个翻折点,点C是抛物线原顶点,
    则点A、B、C的横坐标分别为﹣、1、,
    ①函数值y随x的增大而减小时,﹣≤x≤1或x≥,
    故答案为:﹣≤x≤1或x≥;
    ②函数在点A处取得最大值,
    x=﹣,y=(﹣)2﹣2×(﹣)=,
    答:图象G所对应的函数有最大值为;
    (3)n=﹣1时,y=x2+2x﹣2,
    ①参考(2)中的图象知:
    当y=2时,y=x2+2x﹣2=2,
    解得:x=﹣1±,
    若图象G与直线y=2恰好有两个交点,则t>﹣1且-t>,
    所以;
    ②函数的对称轴为:x=n,
    令y=x2﹣2nx+n2﹣3=0,则x=n±,
    当t=2时,点A、B、C的横坐标分别为:﹣2,n,2,
    当x=n在y轴左侧时,(n≤0),
    此时原函数与x轴的交点坐标(n+,0)在x=2的左侧,如下图所示,

    则函数在AB段和点C右侧,
    故:﹣2≤x≤n,即:在﹣2≤n2﹣2≤x≤n2﹣1≤n,
    解得:n≤;
    当x=n在y轴右侧时,(n≥0),
    同理可得:n≥;
    综上:n≤或n≥.
    【点睛】
    在做本题时,可先根据题意分别画出函数的草图,根据草图进行分析更加直观.在做第(1)问时,需注意翻转后的函数是分段函数,所以对最终的解要进行分析,排除掉自变量之外的解;(2)根据草图很直观的便可求得;(3)①需注意图象G与直线y=2恰好有两个交点,多于2个交点的要排除;②根据草图和增减性,列出不等式,求解即可.

    相关试卷

    福建省泉州实验中学2022年中考猜题数学试卷含解析:

    这是一份福建省泉州实验中学2022年中考猜题数学试卷含解析,共23页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2022年福建省泉州市晋江区安海片区中考猜题数学试卷含解析:

    这是一份2022年福建省泉州市晋江区安海片区中考猜题数学试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022届福建省石狮市中考猜题数学试卷含解析:

    这是一份2022届福建省石狮市中考猜题数学试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,-4的相反数是,下列说法错误的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map