搜索
    上传资料 赚现金
    英语朗读宝

    2022届福建省漳州市诏安县中考五模数学试题含解析

    2022届福建省漳州市诏安县中考五模数学试题含解析第1页
    2022届福建省漳州市诏安县中考五模数学试题含解析第2页
    2022届福建省漳州市诏安县中考五模数学试题含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届福建省漳州市诏安县中考五模数学试题含解析

    展开

    这是一份2022届福建省漳州市诏安县中考五模数学试题含解析,共23页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
    一、选择题(共10小题,每小题3分,共30分)
    1.按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是( )
    ①△ABC与△DEF是位似图形 ②△ABC与△DEF是相似图形
    ③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.
    A.1B.2C.3D.4
    2.如图,在▱ABCD中,AB=1,AC=4,对角线AC与BD相交于点O,点E是BC的中点,连接AE交BD于点F.若AC⊥AB,则FD的长为( )
    A.2B.3C.4D.6
    3.如图,在正八边形ABCDEFGH中,连接AC,AE,则的值是( )
    A.1B.C.2D.
    4.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F, S△AEF=3,则S△FCD为( )
    A.6B.9C.12D.27
    5.下列运算正确的是( )
    A.x•x4=x5B.x6÷x3=x2C.3x2﹣x2=3D.(2x2)3=6x6
    6.关于x的一元二次方程x2-2x-(m-1)=0有两个不相等的实数根,则实数m的取值范围是( )
    A.且B.C.且D.
    7.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为( )
    A.3×109B.3×108C.30×108D.0.3×1010
    8.在﹣3,﹣1,0,1四个数中,比﹣2小的数是( )
    A.﹣3B.﹣1C.0D.1
    9.函数y=中,自变量x的取值范围是( )
    A.x>3B.x<3C.x=3D.x≠3
    10.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为( )
    A.6B.8C.10D.12
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在直角坐标系中,点A(2,0),点B (0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折,使点C落在点D处,若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为___________________________.
    12.已知函数y=|x2﹣x﹣2|,直线y=kx+4恰好与y=|x2﹣x﹣2|的图象只有三个交点,则k的值为_____.
    13.如图,反比例函数(x>0)的图象与矩形OABC的边长AB、BC分别交于点E、F且AE=BE,则△OEF的面积的值为 .
    14.如图,正方形ABCD的边长为,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB, 垂足为点F,则EF的长是__________.
    15.如图,已知P是线段AB的黄金分割点,且PA>PB.若S1表示以PA为一边的正方形的面积,S2表示长是AB、宽是PB的矩形的面积,则S1_______S2.(填“>”“="”“" <”)
    16.高速公路某收费站出城方向有编号为的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:
    在五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________.
    三、解答题(共8题,共72分)
    17.(8分)已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.
    (1)求证:四边形FBGH是菱形;
    (2)求证:四边形ABCH是正方形.
    18.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:本次抽样调查共抽取了多少名学生?求测试结果为C等级的学生数,并补全条形图;若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.
    19.(8分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,与函数的图象的一个交点为.
    (1)求,,的值;
    (2)将线段向右平移得到对应线段,当点落在函数的图象上时,求线段扫过的面积.
    20.(8分)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣3,0),B(1,0),与y轴相交于(0,﹣),顶点为P.
    (1)求抛物线解析式;
    (2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;
    (3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积.
    21.(8分)某超市在春节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣和优惠,在每个转盘中指针指向每个区域的可能性均相同,若指针指向分界线,则重新转动转盘,区域对应的优惠方式如下,A1,A2,A3区域分别对应9折8折和7折优惠,B1,B2,B3,B4区域对应不优惠?本次活动共有两种方式.
    方式一:转动转盘甲,指针指向折扣区域时,所购物品享受对应的折扣优惠,指针指向其他区域无优惠;
    方式二:同时转动转盘甲和转盘乙,若两个转盘的指针均指向折扣区域时,所购物品享受折上折的优惠,其他情况无优惠.
    (1)若顾客选择方式一,则享受优惠的概率为 ;
    (2)若顾客选择方式二,请用树状图或列表法列出所有可能顾客享受折上折优惠的概率.
    22.(10分)如图,平面直角坐标系中,直线与x轴,y轴分别交于A,B两点,与反比例函数的图象交于点.
    求反比例函数的表达式;
    若点C在反比例函数的图象上,点D在x轴上,当四边形ABCD是平行四边形时,求点D的坐标.
    23.(12分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.
    24.某花卉基地种植了郁金香和玫瑰两种花卉共 30 亩,有关数据如表:
    (1)设种植郁金香 x 亩,两种花卉总收益为 y 万元,求 y 关于 x 的函数关系式.(收益=销售额﹣成本)
    (2) 若计划投入的成本的总额不超过 70 万元,要使获得的收益最大,基地应种植郁金香和玫瑰个多少亩?
    参考答案
    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出 ②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.
    【详解】
    解:根据位似性质得出①△ABC与△DEF是位似图形,
    ②△ABC与△DEF是相似图形,
    ∵将△ABC的三边缩小的原来的,
    ∴△ABC与△DEF的周长比为2:1,
    故③选项错误,
    根据面积比等于相似比的平方,
    ∴④△ABC与△DEF的面积比为4:1.
    故选C.
    【点睛】
    此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.
    2、C
    【解析】
    利用平行四边形的性质得出△ADF∽△EBF,得出=,再根据勾股定理求出BO的长,进而得出答案.
    【详解】
    解:∵在□ABCD中,对角线AC、BD相交于O,
    ∴BO=DO,AO=OC,AD∥BC,
    ∴△ADF∽△EBF,
    ∴=,
    ∵AC=4,
    ∴AO=2,
    ∵AB=1,AC⊥AB,
    ∴BO===3,
    ∴BD=6,
    ∵E是BC的中点,
    ∴==,
    ∴BF=2, FD=4.
    故选C.
    【点睛】
    本题考查了勾股定理与相似三角形的判定与性质,解题的关键是熟练的掌握勾股定理与相似三角形的判定与性质.
    3、B
    【解析】
    连接AG、GE、EC,易知四边形ACEG为正方形,根据正方形的性质即可求解.
    【详解】
    解:连接AG、GE、EC,
    则四边形ACEG为正方形,故=.
    故选:B.
    【点睛】
    本题考查了正多边形的性质,正确作出辅助线是关键.
    4、D
    【解析】
    先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.
    【详解】
    解:∵四边形ABCD是平行四边形,AE:EB=1:2,
    ∴AE:CD=1:3,
    ∵AB∥CD,
    ∴∠EAF=∠DCF,
    ∵∠DFC=∠AFE,
    ∴△AEF∽△CDF,
    ∵S△AEF=3,
    ∴==()2,
    解得S△FCD=1.
    故选D.
    【点睛】
    本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.
    5、A
    【解析】
    根据同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方与积的乘方运算法则逐一计算作出判断:
    A、x•x4=x5,原式计算正确,故本选项正确;
    B、x6÷x3=x3,原式计算错误,故本选项错误;
    C、3x2﹣x2=2x2,原式计算错误,故本选项错误;
    D、(2x2)3=8x,原式计算错误,故本选项错误.
    故选A.
    6、A
    【解析】
    根据一元二次方程的系数结合根的判别式△>1,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.
    【详解】
    ∵关于x的一元二次方程x2﹣2x﹣(m﹣1)=1有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.
    故选B.
    【点睛】
    本题考查了根的判别式,牢记“当△>1时,方程有两个不相等的实数根”是解题的关键.
    7、A
    【解析】
    科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
    【详解】
    将数据30亿用科学记数法表示为,
    故选A.
    【点睛】
    此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
    8、A
    【解析】
    因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案.
    【详解】
    因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,
    所以在-3,-1,0,1这四个数中比-2小的数是-3,
    故选A.
    【点睛】
    本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.
    9、D
    【解析】
    由题意得,x﹣1≠0,
    解得x≠1.
    故选D.
    10、C
    【解析】
    ∵DE∥BC,
    ∴∠ADE=∠B,∠AED=∠C,
    又∵∠ADE=∠EFC,
    ∴∠B=∠EFC,△ADE∽△EFC,
    ∴BD∥EF,,
    ∴四边形BFED是平行四边形,
    ∴BD=EF,
    ∴,解得:DE=10.
    故选C.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    ∵点A(2,0),点B (0,1),
    ∴OA=2,OB=1, .
    ∵l⊥AB,
    ∴∠PAC+OAB=90°.
    ∵∠OBA+∠OAB=90°,
    ∴∠OBA=∠PAC.
    ∵∠AOB=∠ACP,
    ∴△ABO∽△PAC,
    .
    设AC=m,PC=2m, .
    当点P在x轴的上方时,
    由 得, , ,
    ,PC=1,
    ,

    由 得, , ∴m=2,
    ∴AC=2,PC=4,
    ∴OC=2+2=4,
    ∴P(4,4).
    当点P在x轴的下方时,
    由 得, , ,
    ,PC=1,
    ,

    由 得, , ∴m=2,
    ∴AC=2,PC=4,
    ∴OC=2-2=0,
    ∴P(0,4).
    所以P点坐标为或(4,4)或或(0,4)
    【点睛】本题考察了相似三角形的判定,相似三角形的性质,平面直角坐标系点的坐标及分类讨论的思想.在利用相似三角形的性质列比例式时,要找好对应边,如果对应边不确定,要分类讨论.因点P在x轴上方和下方得到的结果也不一样,所以要分两种情况求解.
    请在此填写本题解析!
    12、1﹣1或﹣1
    【解析】
    直线y=kx+4与抛物线y=-x1+x+1(-1≤x≤1)相切时,直线y=kx+4与y=|x1-x-1|的图象恰好有三个公共点,即-x1+x+1=kx+4有相等的实数解,利用根的判别式的意义可求出此时k的值,另外当y=kx+4过(1,0)时,也满足条件.
    【详解】
    解:当y=0时,x1-x-1=0,解得x1=-1,x1=1,
    则抛物线y=x1-x-1与x轴的交点为(-1,0),(1,0),
    把抛物线y=x1-x-1图象x轴下方的部分沿x轴翻折到x轴上方,
    则翻折部分的抛物线解析式为y=-x1+x+1(-1≤x≤1),
    当直线y=kx+4与抛物线y=-x1+x+1(-1≤x≤1)相切时,
    直线y=kx+4与函数y=|x1-x-1|的图象恰好有三个公共点,
    即-x1+x+1=kx+4有相等的实数解,整理得x1+(k-1)x+1=0,△=(k-1)1-8=0,
    解得k=1±1 ,
    所以k的值为1+1或1-1.
    当k=1+1时,经检验,切点横坐标为x=-<-1不符合题意,舍去.
    当y=kx+4过(1,0)时,k=-1,也满足条件,
    故答案为1-1或-1.
    【点睛】
    本题考查了二次函数与几何变换:翻折变化不改变图形的大小,故|a|不变,利用顶点式即可求得翻折后的二次函数解析式;也可利用绝对值的意义,直接写出自变量在-1≤x≤1上时的解析式。
    13、
    【解析】
    试题分析:如图,连接OB.
    ∵E、F是反比例函数(x>0)的图象上的点,EA⊥x轴于A,FC⊥y轴于C,∴S△AOE=S△COF=×1=.
    ∵AE=BE,∴S△BOE=S△AOE=,S△BOC=S△AOB=1.
    ∴S△BOF=S△BOC﹣S△COF=1﹣=.∴F是BC的中点.
    ∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=6﹣﹣﹣×=.
    14、2
    【解析】
    设EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.
    【详解】
    设EF=x,
    ∵四边形ABCD是正方形,
    ∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,
    ∴BD=AB=4+4,EF=BF=x,
    ∴BE=x,
    ∵∠BAE=22.5°,
    ∴∠DAE=90°-22.5°=67.5°,
    ∴∠AED=180°-45°-67.5°=67.5°,
    ∴∠AED=∠DAE,
    ∴AD=ED,
    ∴BD=BE+ED=x+4+2=4+4,
    解得:x=2,
    即EF=2.
    15、=.
    【解析】
    黄金分割点,二次根式化简.
    【详解】
    设AB=1,由P是线段AB的黄金分割点,且PA>PB,
    根据黄金分割点的,AP=,BP=.
    ∴.∴S1=S1.
    16、B
    【解析】
    利用同时开放其中的两个安全出口,20分钟所通过的小车的数量分析对比,能求出结果.
    【详解】
    同时开放A、E两个安全出口,与同时开放D、E两个安全出口,20分钟的通过数量发现得到D疏散乘客比A快;
    同理同时开放BC与 CD进行对比,可知B疏散乘客比D快;
    同理同时开放BC与 AB进行对比,可知C疏散乘客比A快;
    同理同时开放DE与 CD进行对比,可知E疏散乘客比C快;
    同理同时开放AB与 AE进行对比,可知B疏散乘客比E快;
    所以B口的速度最快
    故答案为B.
    【点睛】
    本题考查简单的合理推理,考查推理论证能力等基础知识,考查运用求解能力,考查函数与方程思想,是基础题.
    三、解答题(共8题,共72分)
    17、(1)见解析 (2)见解析
    【解析】
    (1)由三角形中位线知识可得DF∥BG,GH∥BF,根据菱形的判定的判定可得四边形FBGH是菱形;
    (2)连结BH,交AC于点O,利用平行四边形的对角线互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC.再根据对角线互相垂直平分的平行四边形得证四边形ABCH是菱形,再根据一组邻边相等的菱形即可求解.
    【详解】
    (1)∵点F、G是边AC的三等分点,
    ∴AF=FG=GC.
    又∵点D是边AB的中点,
    ∴DH∥BG.
    同理:EH∥BF.
    ∴四边形FBGH是平行四边形,
    连结BH,交AC于点O,
    ∴OF=OG,
    ∴AO=CO,
    ∵AB=BC,
    ∴BH⊥FG,
    ∴四边形FBGH是菱形;
    (2)∵四边形FBGH是平行四边形,
    ∴BO=HO,FO=GO.
    又∵AF=FG=GC,
    ∴AF+FO=GC+GO,即:AO=CO.
    ∴四边形ABCH是平行四边形.
    ∵AC⊥BH,AB=BC,
    ∴四边形ABCH是正方形.
    【点睛】
    本题考查正方形的判定,菱形的判定和性质,三角形的中位线,熟练掌握正方形的判定和性质是解题的关键.
    18、(1)50;(2)16;(3)56(4)见解析
    【解析】
    (1)用A等级的频数除以它所占的百分比即可得到样本容量;
    (2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;
    (4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.
    【详解】
    (1)10÷20%=50(名)
    答:本次抽样调查共抽取了50名学生.
    (2)50-10-20-4=16(名)
    答:测试结果为C等级的学生有16名.
    图形统计图补充完整如下图所示:
    (3)700×=56(名)
    答:估计该中学八年级学生中体能测试结果为D等级的学生有56名.
    (4)画树状图为:
    共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,
    所以抽取的两人恰好都是男生的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
    19、(1)m=4, n=1,k=3.(2)3.
    【解析】
    (1) 把点,分别代入直线中即可求出m=4,再把代入直线即可求出n=1.把代入函数求出k即可;
    (2)由(1)可求出点B的坐标为(0,4),点B‘是由点B向右平移得到,故点B’的纵坐标为4,把它代入反比例函数解析式即可求出它的横坐标,根据平移的知识可知四边形AA’B’B是平行四边形,再根据平行四边形的面积计算公式计算即可.
    【详解】
    解:(1)把点,分别代入直线中得:
    -4+m=0,
    m=4,
    ∴直线解析式为.
    把代入得:
    n=-3+4=1.
    ∴点C的坐标为(3,1)
    把(3,1)代入函数得:
    解得:k=3.
    ∴m=4, n=1,k=3.
    (2)如图,设点B的坐标为(0,y)则y=-0+4=4
    ∴点B的坐标是(0,4)
    当y=4时,
    解得,
    ∴点B’( ,4)
    ∵A’,B’是由A,B向右平移得到,
    ∴四边形AA’B’B是平行四边形,
    故四边形AA’B’B的面积=4=3.
    【点睛】
    本题考查了一次函数与反比例函数的交点问题及函数的平移,利用数形结合思想作出图形是解题的关键.
    20、(1)y=x2+x﹣(2)存在,(﹣1﹣2,2)或(﹣1+2,2)(3)点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为 1
    【解析】
    (1)设抛物线解析式为y=ax2+bx+c,把(﹣3,0),(1,0),(0,)代入求出a、b、c的值即可;(2)根据抛物线解析式可知顶点P的坐标,由两个三角形的底相同可得要使两个三角形面积相等则高相等,根据P点坐标可知E点纵坐标,代入解析式求出x的值即可;(3)分别讨论AB为边、AB为对角线两种情况求出F点坐标并求出面积即可;
    【详解】
    (1)设抛物线解析式为y=ax2+bx+c,将(﹣3,0),(1,0),(0,)代入抛物线解析式得,
    解得:a=,b=1,c=﹣
    ∴抛物线解析式:y=x2+x﹣
    (2)存在.
    ∵y=x2+x﹣=(x+1)2﹣2
    ∴P点坐标为(﹣1,﹣2)
    ∵△ABP的面积等于△ABE的面积,
    ∴点E到AB的距离等于2,
    设E(a,2),
    ∴a2+a﹣=2
    解得a1=﹣1﹣2,a2=﹣1+2
    ∴符合条件的点E的坐标为(﹣1﹣2,2)或(﹣1+2,2)
    (3)∵点A(﹣3,0),点B(1,0),
    ∴AB=4
    若AB为边,且以A、B、P、F为顶点的四边形为平行四边形
    ∴AB∥PF,AB=PF=4
    ∵点P坐标(﹣1,﹣2)
    ∴点F坐标为(3,﹣2),(﹣5,﹣2)
    ∴平行四边形的面积=4×2=1
    若AB为对角线,以A、B、P、F为顶点的四边形为平行四边形
    ∴AB与PF互相平分
    设点F(x,y)且点A(﹣3,0),点B(1,0),点P(﹣1,﹣2)
    ∴ ,
    ∴x=﹣1,y=2
    ∴点F(﹣1,2)
    ∴平行四边形的面积=×4×4=1
    综上所述:点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为1.
    【点睛】
    本题考查待定系数法求二次函数解析式及二次函数的几何应用,分类讨论并熟练掌握数形结合的数学思想方法是解题关键.
    21、(1);(2).
    【解析】
    (1)根据题意和图形,可以求得顾客选择方式一,享受优惠的概率;
    (2)根据题意可以画出相应的树状图,从而可以求得相应的概率.
    【详解】
    解:(1)由题意可得,
    顾客选择方式一,则享受优惠的概率为:,
    故答案为:;
    (2)树状图如下图所示,
    则顾客享受折上折优惠的概率是:,
    即顾客享受折上折优惠的概率是.
    【点睛】
    本题考查列表法与树状图法,解答本题的关键是明确题意,列出相应的树状图,求出相应的概率.
    22、(1)y= (1)(1,0)
    【解析】
    (1)将点M的坐标代入一次函数解析式求得a的值;然后将点M的坐标代入反比例函数解析式,求得k的值即可;
    (1)根据平行四边形的性质得到BC∥AD且BD=AD,结合图形与坐标的性质求得点D的坐标.
    【详解】
    解:(1)∵点M(a,4)在直线y=1x+1上,
    ∴4=1a+1,
    解得a=1,
    ∴M(1,4),将其代入y=得到:k=xy=1×4=4,
    ∴反比例函数y=(x>0)的表达式为y=;
    (1)∵平面直角坐标系中,直线y=1x+1与x轴,y轴分别交于A,B两点,
    ∴当x=0时,y=1.
    当y=0时,x=﹣1,
    ∴B(0,1),A(﹣1,0).
    ∵BC∥AD,
    ∴点C的纵坐标也等于1,且点C在反比例函数图象上,
    将y=1代入y=,得1=,
    解得x=1,
    ∴C(1,1).
    ∵四边形ABCD是平行四边形,
    ∴BC∥AD且BD=AD,
    由B(0,1),C(1,1)两点的坐标知,BC∥AD.
    又BC=1,
    ∴AD=1,
    ∵A(﹣1,0),点D在点A的右侧,
    ∴点D的坐标是(1,0).
    【点睛】
    考查了反比例函数与一次函数交点问题.熟练掌握平行四边形的性质和函数图象上点的坐标特征是解决问题的关键,难度适中.
    23、(1)不可能事件;(2).
    【解析】
    试题分析:(1)根据随机事件的概念即可得“小李同学在该天早餐得到两个油饼”是不可能事件;(2)根据题意画出树状图,再由概率公式求解即可.
    试题解析:(1)小李同学在该天早餐得到两个油饼”是不可能事件;
    (2)树状图法
    即小张同学得到猪肉包和油饼的概率为.
    考点:列表法与树状图法.
    24、(1)y = 0.1x + 15,(2)郁金香 25 亩,玫瑰 5 亩
    【解析】
    (1)根据题意和表格中的数据可得到y关于x的函数;
    (2)根据题意可列出相应的不等式,再根据(1)中的函数关系式即可求解.
    【详解】
    (1)由题意得y=(3-2.4)x-(2.5-2)(30-x)=0.1x+15
    即y关于x的函数关系式为y=0.1x+15
    (2)由题意得2.4x+2(30-x)≤70
    解得x≤25,
    ∵y=0.1x+15
    ∴当x=25时,y最大=17.5
    30-x=5,
    ∴要使获得的收益最大,基地应种植郁金香25亩和玫瑰5亩.
    【点睛】
    此题主要考查一次函数的应用,解题的关键是根据题意进行列出关系式与不等式进行求解.
    收费出口编号
    通过小客车数量(辆)
    260
    330
    300
    360
    240
    成本
    (单位:万元/亩)
    销售额
    (单位:万元/亩)
    郁金香
    2.4
    3
    玫瑰
    2
    2.5

    相关试卷

    2024年福建省漳州市中考数学一模试卷(含解析):

    这是一份2024年福建省漳州市中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    福建省漳州市重点名校2021-2022学年中考五模数学试题含解析:

    这是一份福建省漳州市重点名校2021-2022学年中考五模数学试题含解析,共21页。试卷主要包含了如图所示的几何体的俯视图是,﹣6的倒数是,平面直角坐标系中的点P等内容,欢迎下载使用。

    2022年福建省漳州市龙海市市级名校中考数学五模试卷含解析:

    这是一份2022年福建省漳州市龙海市市级名校中考数学五模试卷含解析,共22页。试卷主要包含了最小的正整数是,函数y=mx2+等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map