![2022届甘肃省静宁县中考数学五模试卷含解析第1页](http://img-preview.51jiaoxi.com/2/3/13314987/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届甘肃省静宁县中考数学五模试卷含解析第2页](http://img-preview.51jiaoxi.com/2/3/13314987/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届甘肃省静宁县中考数学五模试卷含解析第3页](http://img-preview.51jiaoxi.com/2/3/13314987/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022届甘肃省静宁县中考数学五模试卷含解析
展开
这是一份2022届甘肃省静宁县中考数学五模试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,下列运算中,计算结果正确的是,下列分式是最简分式的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在平面直角坐标系中,位于第二象限,点的坐标是,先把向右平移3个单位长度得到,再把绕点顺时针旋转得到,则点的对应点的坐标是( )
A. B. C. D.
2.对于不等式组,下列说法正确的是( )
A.此不等式组的正整数解为1,2,3
B.此不等式组的解集为
C.此不等式组有5个整数解
D.此不等式组无解
3.如图,菱形ABCD中,∠B=60°,AB=4,以AD为直径的⊙O交CD于点E,则的长为( )
A. B. C. D.
4.若二次函数的图像与轴有两个交点,则实数的取值范围是( )
A. B. C. D.
5.若代数式的值为零,则实数x的值为( )
A.x=0 B.x≠0 C.x=3 D.x≠3
6.已知关于x的方程2x+a-9=0的解是x=2,则a的值为
A.2 B.3 C.4 D.5
7.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )
A. B. C. D.
8.如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是( )
A.150° B.140° C.130° D.120°
9.下列运算中,计算结果正确的是( )
A.a2•a3=a6 B.a2+a3=a5 C.(a2)3=a6 D.a12÷a6=a2
10.下列分式是最简分式的是( )
A. B. C. D.
11.将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为( )
A.10° B.15° C.20° D.25°
12.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )
A.76° B.78° C.80° D.82°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.因式分解______.
14.化简:______.
15.已知关于x的不等式组只有四个整数解,则实数a的取值范是______.
16.如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为_________________________.
17.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是________.
18.若a、b为实数,且b=+4,则a+b=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.
请结合以上信息解答下列问题:
(1)m= ;
(2)请补全上面的条形统计图;
(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;
(4)已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动.
20.(6分)如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.求∠CFA度数;求证:AD∥BC.
21.(6分)如图,在四边形ABCD中,点E是对角线BD上的一点,EA⊥AB,EC⊥BC,且EA=EC.求证:AD=CD.
22.(8分) (1)计算:
(2)先化简,再求值:,其中x是不等式的负整数解.
23.(8分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.
(1)求证:AH是⊙O的切线;
(2)若OB=4,AC=6,求sin∠ACB的值;
(3)若,求证:CD=DH.
24.(10分)已知关于 的方程mx2+(2m-1)x+m-1=0(m≠0) . 求证:方程总有两个不相等的实数根; 若方程的两个实数根都是整数,求整数 的值.
25.(10分)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.
(1)求证:PC是⊙O的切线;
(2)设OP=AC,求∠CPO的正弦值;
(3)设AC=9,AB=15,求d+f的取值范围.
26.(12分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.
(1)若前四局双方战成2:2,那么甲队最终获胜的概率是__________;
(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?
27.(12分)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上且AB=12cm
(1)若OB=6cm.
①求点C的坐标;
②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;
(2)点C与点O的距离的最大值是多少cm.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据要求画出图形,即可解决问题.
【详解】
解:根据题意,作出图形,如图:
观察图象可知:A2(4,2);
故选:D.
【点睛】
本题考查平移变换,旋转变换等知识,解题的关键是正确画出图象,属于中考常考题型.
2、A
【解析】
解:,解①得x≤,解②得x>﹣1,所以不等式组的解集为﹣1<x≤,所以不等式组的整数解为1,2,1.故选A.
点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.
3、B
【解析】
连接OE,由菱形的性质得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性质和三角形内角和定理求出∠DOE=60°,再由弧长公式即可得出答案.
【详解】
解:连接OE,如图所示:
∵四边形ABCD是菱形,
∴∠D=∠B=60°,AD=AB=4,
∴OA=OD=2,
∵OD=OE,
∴∠OED=∠D=60°,
∴∠DOE=180°﹣2×60°=60°,
∴ 的长==;
故选B.
【点睛】
本题考查弧长公式、菱形的性质、等腰三角形的性质等知识;熟练掌握菱形的性质,求出∠DOE的度数是解决问题的关键.
4、D
【解析】
由抛物线与x轴有两个交点可得出△=b2-4ac>0,进而可得出关于m的一元一次不等式,解之即可得出m的取值范围.
【详解】
∵抛物线y=x2-2x+m与x轴有两个交点,
∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,
解得:m<1.
故选D.
【点睛】
本题考查了抛物线与x轴的交点,牢记“当△=b2-4ac>0时,抛物线与x轴有2个交点”是解题的关键.
5、A
【解析】
根据分子为零,且分母不为零解答即可.
【详解】
解:∵代数式的值为零,
∴x=0,
此时分母x-3≠0,符合题意.
故选A.
【点睛】
本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.
6、D
【解析】
∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,
解得a=1.故选D.
7、B
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.
【详解】
画树状图如下:
由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,
所以佳佳和琪琪恰好从同一个入口进入该公园的概率为,
故选B.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
8、A
【解析】
直接根据圆周角定理即可得出结论.
【详解】
∵A、B、C是⊙O上的三点,∠B=75°,
∴∠AOC=2∠B=150°.
故选A.
9、C
【解析】
根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.
【详解】
A、a2•a3=a2+3=a5,故本选项错误;
B、a2+a3不能进行运算,故本选项错误;
C、(a2)3=a2×3=a6,故本选项正确;
D、a12÷a6=a12﹣6=a6,故本选项错误.
故选:C.
【点睛】
本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.
10、C
【解析】
解:A.,故本选项错误;
B.,故本选项错误;
C.,不能约分,故本选项正确;
D.,故本选项错误.
故选C.
点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.
11、A
【解析】
先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.
【详解】
由图可得,∠CDE=40° ,∠C=90°,
∴∠CED=50°,
又∵DE∥AF,
∴∠CAF=50°,
∵∠BAC=60°,
∴∠BAF=60°−50°=10°,
故选A.
【点睛】
本题考查了平行线的性质,熟练掌握这一点是解题的关键.
12、B
【解析】
如图,分别过K、H作AB的平行线MN和RS,
∵AB∥CD,
∴AB∥CD∥RS∥MN,
∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,
∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),
∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,
∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,
又∠BKC﹣∠BHC=27°,
∴∠BHC=∠BKC﹣27°,
∴∠BKC=180°﹣2(∠BKC﹣27°),
∴∠BKC=78°,
故选B.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、a(3a+1)
【解析】
3a2+a=a(3a+1),
故答案为a(3a+1).
14、3
【解析】
分析:根据算术平方根的概念求解即可.
详解:因为32=9
所以=3.
故答案为3.
点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.
15、-3<a≤-2
【解析】
分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a的范围.
详解:
由不等式①解得:
由不等式②移项合并得:−2x>−4,
解得:x
相关试卷
这是一份2024年甘肃省武威五中教研联片中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年甘肃省武威五中联片教研中考数学三模试卷(含解析),共23页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份甘肃省平凉市庄浪县2022年中考数学五模试卷含解析,共19页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)