2022届甘肃省兰州市永登县重点达标名校中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列调查中适宜采用抽样方式的是( )
A.了解某班每个学生家庭用电数量 B.调查你所在学校数学教师的年龄状况
C.调查神舟飞船各零件的质量 D.调查一批显像管的使用寿命
2.一元二次方程2x2﹣3x+1=0的根的情况是( )
A.有两个相等的实数根 B.有两个不相等的实数根
C.只有一个实数根 D.没有实数根
3.在一个直角三角形中,有一个锐角等于45°,则另一个锐角的度数是( )
A.75° B.60° C.45° D.30°
4.已知a为整数,且 A.1 B.2 C.3 D.4
5.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是( )
A.70° B.44° C.34° D.24°
6.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是( )
A. B. C. D.
7.4的平方根是( )
A.16 B.2 C.±2 D.±
8.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是( )
A. B. C. D.
9.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则的正弦值是
A. B. C. D.
10.下列计算正确的是( )
A.a4+a5=a9 B.(2a2b3)2=4a4b6
C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b2
11.下列图案中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
12.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。”大致意思是:“用一根绳子去量一根木条,绳长剩余4.5尺,将绳子对折再量木条,木条剩余一尺,问木条长多少尺”,设绳子长尺,木条长尺,根据题意所列方程组正确的是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.对角线互相平分且相等的四边形是( )
A.菱形 B.矩形 C.正方形 D.等腰梯形
14.函数y= 中,自变量x的取值范围是 _____.
15.如图,点是反比例函数图像上的两点(点在点左侧),过点作轴于点,交于点,延长交轴于点,已知,,则的值为__________.
16.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为 .
17.计算两个两位数的积,这两个数的十位上的数字相同,个位上的数字之和等于1.
53×57=3021,38×32=1216,84×86=7224,71×79=2.
(1)你发现上面每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的 ,请写出一个符合上述规律的算式 .
(2)设其中一个数的十位数字为a,个位数字为b,请用含a,b的算式表示这个规律.
18.如图,在直角坐标系中,点A(2,0),点B (0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折,使点C落在点D处,若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为___________________________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在Rt△ABC中,∠C=90°,AC=AB.求证:∠B=30°.
请填空完成下列证明.
证明:如图,作Rt△ABC的斜边上的中线CD,
则 CD=AB=AD ( ).
∵AC=AB,
∴AC=CD=AD 即△ACD是等边三角形.
∴∠A= °.
∴∠B=90°﹣∠A=30°.
20.(6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)的顶点、的坐标分别为,.
请在如图所示的网格平面内作出平面直角坐标系;请作出关于轴对称的;点的坐标为 .的面积为 .
21.(6分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;
(1)求购买一个甲种足球、一个乙种足球各需多少元;
(2)2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?
22.(8分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作⊙O的切线DE交AC于点E,交AB延长线于点F.
(1)求证:BD=CD;
(2)求证:DC2=CE•AC;
(3)当AC=5,BC=6时,求DF的长.
23.(8分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.
(1)三辆汽车经过此收费站时,都选择A通道通过的概率是 ;
(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.
24.(10分)如图,在直角坐标系中△ABC的A、B、C三点坐标A(7,1)、B(8,2)、C(9,0).
(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求与△ABC同在P点一侧),画出△A′B′C′关于y轴对称的△A′'B′'C′';
(2)写出点A'的坐标.
25.(10分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.
26.(12分)如图平行四边形ABCD中,对角线AC,BD交于点O,EF过点O,并与AD,BC分别交于点E,F,已知AE=3,BF=5
(1)求BC的长;
(2)如果两条对角线长的和是20,求三角形△AOD的周长.
27.(12分)定义:如果把一条抛物线绕它的顶点旋转180°得到的抛物线我们称为原抛物线的“孪生抛物线”.
(1)求抛物线y=x2﹣2x的“孪生抛物线”的表达式;
(2)若抛物线y=x2﹣2x+c的顶点为D,与y轴交于点C,其“孪生抛物线”与y轴交于点C′,请判断△DCC’的形状,并说明理由:
(3)已知抛物线y=x2﹣2x﹣3与y轴交于点C,与x轴正半轴的交点为A,那么是否在其“孪生抛物线”上存在点P,在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形?若存在,求出P点的坐标;若不存在,说明理由.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据全面调查与抽样调查的特点对各选项进行判断.
【详解】
解:了解某班每个学生家庭用电数量可采用全面调查;调查你所在学校数学教师的年龄状况可采用全面调查;调查神舟飞船各零件的质量要采用全面调查;而调查一批显像管的使用寿命要采用抽样调查.
故选:D.
【点睛】
本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.
2、B
【解析】
试题分析:对于一元二次方程,当△=时方程有两个不相等的实数根,当△=时方程有两个相等的实数根,当△=时方程没有实数根.根据题意可得:△=,则方程有两个不相等的实数根.
3、C
【解析】
根据直角三角形两锐角互余即可解决问题.
【详解】
解:∵直角三角形两锐角互余,
∴另一个锐角的度数=90°﹣45°=45°,
故选C.
【点睛】
本题考查直角三角形的性质,记住直角三角形两锐角互余是解题的关键.
4、B
【解析】
直接利用,接近的整数是1,进而得出答案.
【详解】
∵a为整数,且 ∴a=1.
故选:.
【点睛】
考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.
5、C
【解析】
易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC
【详解】
∵AB=BD,∠B=40°,
∴∠ADB=70°,
∵∠C=36°,
∴∠DAC=∠ADB﹣∠C=34°.
故选C.
【点睛】
本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.
6、D
【解析】
根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.
【详解】
∵CD是AB边上的中线,
∴CD=AD,
∴∠A=∠ACD,
∵∠ACB=90°,BC=6,AC=8,
∴tan∠A=,
∴tan∠ACD的值.
故选D.
【点睛】
本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.
7、C
【解析】
试题解析:∵(±2)2=4,
∴4的平方根是±2,
故选C.
考点:平方根.
8、D
【解析】
由题意知:△ABC≌△DEC,
∴∠ACB=∠DCE=30°,AC=DC,
∴∠DAC=(180°−∠DCA)÷2=(180°−30°)÷2=75°.
故选D.
【点睛】
本题主要考查了旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.
9、A
【解析】
由题意根据勾股定理求出OA,进而根据正弦的定义进行分析解答即可.
【详解】
解:由题意得,,,
由勾股定理得,,
.
故选:A.
【点睛】
本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
10、B
【解析】分析:根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算.
详解:A、a4与a5不是同类项,不能合并,故本选项错误;
B、(2a2b3)2=4a4b6,故本选项正确;
C、-2a(a+3)=-2a2-6a,故本选项错误;
D、(2a-b)2=4a2-4ab+b2,故本选项错误;
故选:B.
点睛:本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.
11、B
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故此选项错误;
B、是轴对称图形,也是中心对称图形,故此选项正确;
C、不是轴对称图形,是中心对称图形,故此选项错误;
D、不是轴对称图形,是中心对称图形,故此选项错误.
故选B.
【点睛】
考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
12、A
【解析】
本题的等量关系是:绳长-木长=4.5;木长-×绳长=1,据此列方程组即可求解.
【详解】
设绳子长x尺,木条长y尺,依题意有
.
故选A.
【点睛】
本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、B
【解析】
根据平行四边形的判定与矩形的判定定理,即可求得答案.
【详解】
∵对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,
∴对角线相等且互相平分的四边形一定是矩形.
故选B.
【点睛】
此题考查了平行四边形,矩形,菱形以及等腰梯形的判定定理.此题比较简单,解题的关键是熟记定理.
14、x≠﹣.
【解析】
该函数是分式,分式有意义的条件是分母不等于1,故分母x﹣1≠1,解得x的范围.
【详解】
解:根据分式有意义的条件得:2x+3≠1
解得:
故答案为
【点睛】
本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足分母不等于1.
15、
【解析】
过点B作BF⊥OC于点F,易证S△OAE=S四边形DEBF=,S△OAB=S四边形DABF,因为,所以,,又因为AD∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因为S△OAD=S△OBF,所以×OD×AD =×OF×BF,即BF:AD=2:5= OD:OF,易证:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21,所以S△OED= ,S△OBF= S△OED+ S四边形EDFB=+=, 即可得解:k=2 S△OBF=.
【详解】
解:过点B作BF⊥OC于点F,
由反比例函数的比例系数|k|的意义可知:S△OAD=S△OBF,
∴S△OAD- S△OED =S△OBF一S△OED,即S△OAE=S四边形DEBF=,S△OA B=S四边形DABF,
∵,
∴,,
∵AD∥BF
∴S△BCF∽S△ACD,
又∵,
∴BF:AD=2:5,
∵S△OAD=S△OBF,
∴×OD×AD =×OF×BF
∴BF:AD=2:5= OD:OF
易证:S△OED∽S△OBF,
∴S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21
∵S四边形EDFB=,
∴S△OED= ,S△OBF= S△OED+ S四边形EDFB=+=,
∴k=2 S△OBF=.
故答案为.
【点睛】
本题考查反比例函数的比例系数|k|的几何意义,解题关键是熟练运用相似三角形的判定定理和性质定理.
16、.
【解析】
试题分析:连接OC,已知OA=OC,∠A=30°,所以∠OCA=∠A=30°,由三角形外角的性质可得∠COB=∠A+∠ACO=60°,又因PC是⊙O切线,可得∠PCO=90°,∠P=30°,再由PC=3,根据锐角三角函数可得OC=PC•tan30°=,PC=2OC=2,即可得PB=PO﹣OB=.
考点:切线的性质;锐角三角函数.
17、 (1)十位和个位,44×46=2024;(2) 10a(a+1)+b(1﹣b)
【解析】分析:(1)、根据题意得出其一般性的规律,从而得出答案;(2)、利用代数式表示出其一般规律得出答案.
详解:(1)由已知等式知,每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的十位和个位,
例如:44×46=2024,
(2)(1a+b)(1a+1﹣b)=10a(a+1)+b(1﹣b).
点睛:本题主要考查的是规律的发现与整理,属于基础题型.找出一般性的规律是解决这个问题的关键.
18、
【解析】
∵点A(2,0),点B (0,1),
∴OA=2,OB=1, .
∵l⊥AB,
∴∠PAC+OAB=90°.
∵∠OBA+∠OAB=90°,
∴∠OBA=∠PAC.
∵∠AOB=∠ACP,
∴△ABO∽△PAC,
.
设AC=m,PC=2m, .
当点P在x轴的上方时,
由 得, , ,
,PC=1,
,
由 得, , ∴m=2,
∴AC=2,PC=4,
∴OC=2+2=4,
∴P(4,4).
当点P在x轴的下方时,
由 得, , ,
,PC=1,
,
由 得, , ∴m=2,
∴AC=2,PC=4,
∴OC=2-2=0,
∴P(0,4).
所以P点坐标为或(4,4)或或(0,4)
【点睛】本题考察了相似三角形的判定,相似三角形的性质,平面直角坐标系点的坐标及分类讨论的思想.在利用相似三角形的性质列比例式时,要找好对应边,如果对应边不确定,要分类讨论.因点P在x轴上方和下方得到的结果也不一样,所以要分两种情况求解.
请在此填写本题解析!
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、直角三角形斜边上的中线等于斜边的一半;1.
【解析】
根据直角三角形斜边上的中线等于斜边的一半和等边三角形的判定与性质填空即可.
【详解】
证明:如图,作Rt△ABC的斜边上的中线CD,
则CD=AB=AD(直角三角形斜边上的中线等于斜边的一半),
∵AC=AB,
∴AC=CD=AD 即△ACD是等边三角形,
∴∠A=1°,
∴∠B=90°﹣∠A=30°.
【点睛】
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定与性质,重点在于逻辑思维能力的训练.
20、(1)见解析;(2)见解析;(3);(4)4.
【解析】
(1)根据C点坐标确定原点位置,然后作出坐标系即可;
(2)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;
(3)根据点在坐标系中的位置写出其坐标即可
(4)利用长方形的面积剪去周围多余三角形的面积即可.
【详解】
解:(1)如图所示:
(2)如图所示:
(3)结合图形可得:;
(4) .
【点睛】
此题主要考查了作图−−轴对称变换,关键是确定组成图形的关键点的对称点位置.
21、(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球
【解析】
(1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;
(2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球.
【详解】
(1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+2)元,
根据题意得:,
解得:x=50,
经检验,x=50是原方程的解,且符合题意,
∴x+2=1.
答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元.
(2)设可购买m个乙种足球,则购买(50﹣m)个甲种足球,
根据题意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,
解得:m≤2.
答:这所学校最多可购买2个乙种足球.
【点睛】
本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系.
22、(1)详见解析;(2)详见解析;(3)DF=.
【解析】
(1)先判断出AD⊥BC,即可得出结论;
(2)先判断出OD∥AC,进而判断出∠CED=∠ODE,判断出△CDE∽△CAD,即可得出结论;
(3)先求出OD,再求出CD=3,进而求出CE,AE,DE,再判断出,即可得出结论.
【详解】
(1)连接AD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴BD=CD;
(2)连接OD,
∵DE是⊙O的切线,
∴∠ODE=90°,
由(1)知,BD=CD,
∵OA=OB,
∴OD∥AC,
∴∠CED=∠ODE=90°=∠ADC,
∵∠C=∠C,
∴△CDE∽△CAD,
∴,
∴CD2=CE•AC;
(3)∵AB=AC=5,
由(1)知,∠ADB=90°,OA=OB,
∴OD=AB=,
由(1)知,CD=BC=3,
由(2)知,CD2=CE•AC,
∵AC=5,
∴CE=,
∴AE=AC-CE=5-=,
在Rt△CDE中,根据勾股定理得,DE=,
由(2)知,OD∥AC,
∴,
∴,
∴DF=.
【点睛】
此题是圆的综合题,主要考查了圆的性质,等腰三角形的性质,相似三角形的判断和性质,勾股定理,判断出△CDE∽△CAD是解本题的关键.
23、(1);(2)
【解析】
(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A通道通过的情况数占总情况数的多少即可;
(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B通道通过的情况数占总情况数的多少即可.
【详解】
解:(1)画树状图得:
共8种情况,甲、乙、丙三辆车都选择A通道通过的情况数有1种,
所以都选择A通道通过的概率为,
故答案为:;
(2)∵共有8种等可能的情况,其中至少有两辆汽车选择B通道通过的有4种情况,
∴至少有两辆汽车选择B通道通过的概率为.
【点睛】
考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.
24、(1)见解析;(2)点A'的坐标为(-3,3)
【解析】
解:(1),△A′'B′'C′'如图所示.
(2)点A'的坐标为(-3,3).
25、 (1);(2).
【解析】
(1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为;
(2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可.
【详解】
(1) ∵“美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果,
∴任取一个球,摸出球上的汉字刚好是“美”的概率P=
(2)列表如下:
美
丽
光
明
美
----
(美,丽)
(光,美)
(美,明)
丽
(美,丽)
----
(光,丽)
(明,丽)
光
(美,光)
(光,丽)
----
(光,明)
明
(美,明)
(明,丽)
(光,明)
-------
根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故
取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.
【点睛】
此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
26、 (1)8;(2)1.
【解析】
(1)由平行四边形的性质和已知条件易证△AOE≌△COF,所以可得AE=CF=3,进而可求出BC的长;
(2)由平行四边形的性质:对角线互相平分可求出AO+OD的长,进而可求出三角形△AOD的周长.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AD∥BC,AO=CO,
∴∠EAO=∠FCO,
在△AOE和△COF中
,
∴△AOE≌△COF,
∴AE=CF=3,
∴BC=BF+CF=5+3=8;
(2)∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,AD=BC=8,
∵AC+BD=20,
∴AO+BO=10,
∴△AOD的周长=AO+BO+AD=1.
【点睛】
本题考查了平行四边形的性质和全等三角形的判定以及全等三角形的性质,能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键.
27、(1)y=-(x-1)²=-x²+2x-2;(2)等腰Rt△,(3)P1(3,-8),P2(-3,-20).
【解析】
(1)当抛物线绕其顶点旋转180°后,抛物线的顶点坐标不变,只是开口方向相反,则可根据顶点式写出旋转后的抛物线解析式;
(2)可分别求出原抛物线和其“孪生抛物线”与y轴的交点坐标C、C′,由点的坐标可知△DCC’是等腰直角三角形;
(3)可求出A(3,0),C(0,-3),其“孪生抛物线”为y=-x2+2x-5,当AC为对角线时,由中点坐标可知点P不存在,当AC为边时,分两种情况可求得点P的坐标.
【详解】
(1)抛物线y=x2-2x化为顶点式为y=(x-1)2-1,顶点坐标为(1,-1),由于抛物线y=x2-2x绕其顶点旋转180°后抛物线的顶点坐标不变,只是开口方向相反,
则所得抛物线解析式为y=-(x-1)2-1=-x2+2x-2;
(2)△DCC'是等腰直角三角形,理由如下:
∵抛物线y=x2-2x+c=(x-1)2+c-1,
∴抛物线顶点为D的坐标为(1,c-1),与y轴的交点C的坐标为(0,c),
∴其“孪生抛物线”的解析式为y=-(x-1)2+c-1,与y轴的交点C’的坐标为(0,c-2),
∴CC'=c-(c-2)=2,
∵点D的横坐标为1,
∴∠CDC'=90°,
由对称性质可知DC=DC’,
∴△DCC'是等腰直角三角形;
(3)∵抛物线y=x2-2x-3与y轴交于点C,与x轴正半轴的交点为A,
令x=0,y=-3,令y=0时,y=x2-2x-3,解得x1=-1,x2=3,
∴C(0,-3),A(3,0),
∵y=x2-2x-3=(x-1)2-4,
∴其“孪生抛物线”的解析式为y=-(x-1)2-4=-x2+2x-5,
若A、C为平行四边形的对角线,
∴其中点坐标为(,−),
设P(a,-a2+2a-5),
∵A、C、P、Q为顶点的四边形为平行四边形,
∴Q(0,a-3),
∴=−,
化简得,a2+3a+5=0,△<0,方程无实数解,
∴此时满足条件的点P不存在,
若AC为平行四边形的边,点P在y轴右侧,则AP∥CQ且AP=CQ,
∵点C和点Q在y轴上,
∴点P的横坐标为3,
把x=3代入“孪生抛物线”的解析式y=-32+2×3-5=-9+6-5=-8,
∴P1(3,-8),
若AC为平行四边形的边,点P在y轴左侧,则AQ∥CP且AQ=CP,
∴点P的横坐标为-3,
把x=-3代入“孪生抛物线”的解析式y=-9-6-5=-20,
∴P2(-3,-20)
∴原抛物线的“孪生抛物线”上存在点P1(3,-8),P2(-3,-20),在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形.
【点睛】
本题是二次函数综合题型,主此题主要考查了根据二次函数的图象的变换求抛物线的解析式,解题的关键是求出旋转后抛物线的顶点坐标以及确定出点P的位置,注意分情况讨论.
甘肃省兰州市永登县重点达标名校2021-2022学年中考四模数学试题含解析: 这是一份甘肃省兰州市永登县重点达标名校2021-2022学年中考四模数学试题含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
2022年四川省达州地区重点达标名校中考押题数学预测卷含解析: 这是一份2022年四川省达州地区重点达标名校中考押题数学预测卷含解析,共18页。试卷主要包含了将抛物线y=﹣等内容,欢迎下载使用。
2022年河南省驻马店市重点达标名校中考押题数学预测卷含解析: 这是一份2022年河南省驻马店市重点达标名校中考押题数学预测卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,﹣6的倒数是,如图,AB∥CD,那么等内容,欢迎下载使用。